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Embedding a native state into a random heteropolymer model: The dynamic approach
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We study a random heteropolymer model with Langevin dynamics, in the supersymmetric formulation.
Employing a procedure similar to one that has been used in static calculations, we construct an ensemble in
which the affinity of the system for a native state is controlled by a “selection temperakgréh the limit of
high Ty, the model reduces to a random heteropolymer, whileTfpr 0 the system is forced into the native
state. Within the Gaussian variational approach that we employed previously for the random heteropolymer, we
explore the phases of the system for high and By For high T, the system exhibits &ynamical
spin-glass phase, like that found for the random heteropolymer, below a tempéiatufer low T,, we find
an ordered phase, characterized by a nonzero overlap with the native state, below a tempgrt(irg
>Tg4. However, the random-globule phase remains locally stable b&lpwdown to the dynamical glass
transition atT,. Thus, in this model, folding is rapid for temperatures betw&gmandT, , but belowT the
system can get trapped in conformations uncorrelated with the native state. At a lower temperature, the ordered
phase can also undergo a dynamical glass transition, splitting into substates separated by large barriers.
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[. INTRODUCTION possible glassiness in models for protein dynamics.
Why are real proteins not glassy? Evidently, nature has

The protein folding process is relevant for all aspects oftuned amino acid sequences to avoid glassy behavior. To
life: once read off from the RNA chain, proteins perform a understand how such tuning might be done, it is worthwhile
variety of functions, from mechanical work to attacking vi- to study models that contain competition between glassiness
ruses[1]. The key factor that determines the function of aand a tendency to form a native state, by choosing interac-
protein molecule is its 3D structure, which, in turn, is deter-tions that are not completely random. Several studies along
mined by the sequence of amino acids forming the proteirthe lines of this suggestion have been madstatics(using
chain[2-5]. Furthermore, a protein that has been denaturethe replica treatment, see, e.g., R&3]). The tendency to-
(by stretching it for examp)efinds its native state relatively wards a particular state can be built in by choosing sequences
quickly. Protein folding has attracted an enormous amount ofrom a distribution correlated with the native sequence
scientific attention, but still there is no generic understanding2,24—26. A dynamical treatment of similar models is
of this process. Nevertheless, one thing is clear: a proteihighly desirable, not only to help gain insight into results
generally has a potential energy surface which results in abtained in replica approaches, but also because knowledge
stable free energy minimum, corresponding to the nativeof the correct thermodynamics alone may not be sufficient: it
state[3]. is known that in relatedmean-field models static and dy-

Random heteropolymer modé¢RHP) have been used ex- namic phase diagrams can be different. Tlias least on
tensively as candidate systems, which might help us undesufficiently short-time scalg¢®nly a dynamical approach can
stand the generic features of the potential energy surfaces describe the measurable properties of the system. In this pa-
proteins and their connection with thermodynarpfic-13] per we undertake such a study.
and dynamica[14—-2Q properties. The RHP model is char- We extend the RHP model studied in Reff§,7] to in-
acterized by quenched random monomer-monomer interaclude the existence of a native state: the original random
tions, meant to mimic the variety of interactions betweenmonomer-monomer interactions are biased so as to favor the
amino acids in random sequences. It turns out that the potemative state conformation. The problem is formulated as a
tial energy surface of the RHP is quite similar to that of aLangevin model. To the best of our knowledge, there is so far
particular class of spin glassg2l]: Its complex form, with  neither a static nor a dynamic treatment available for a model
exponentially large numbers of local minima and saddleof this sort: Static studies have been based on random mono-
points, constrains the motion of the system drastically, and itmer sequences, i.e., using o random parameters, see
cannot explore its full configuration space and reach Gibb&efs.[2,24-28, rather tharN(N—1)/2 in the RHP model.
equilibrium. In a previous papéf22], henceforth referred to Admittedly, the model does not describe a realistic protein
as paper), we demonstrated, in mean-field theory, the exis-(e.g., it does not give rise to secondary structure such as
tence of a sharp transition to a “dynamical glassy state” inhelices org sheets However, it does contain important ge-
which the equilibration time diverges and the dynamics exneric features: the polymeric structure and the mixture of
hibit aging. (The potential importance of spin-glass physicsattractive and repulsive interactions. Together, these features
to proteins was first discussed in RE23].) Obviously, the lead to frustration in the structural dynamics. In our view,
random heteropolymer model does not describe a proteiours is the simplest such model that includes competition
with a native state, but it alerts us to the need to examindetween glassy and native states. As we will see, it teaches
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us that one cannot get rid of glassiness so easily. compact, i.e.Ry~N, we requirex~N~*4. Thus, since

As in paper |, we simplify the model further by omitting we are interested in very long proteifte obtain the thermo-
three-body interactions in the polyméA review describing  dynamic limi) we need to solve the model far close to
how to include three-body terms is given in REJ).) The  zero.
price we have to pay for this simplification is that we have to  The random parH[x,{B}] describes the quenched ran-
introduce a somewhat arbitrary confining potential, whichdom interactions between monomers,
we take to have a quadratic form. We adjust its strength so
that the radius of gyratioRy of a polymer of sizeN scales 1N
like N~ whered is the dimensionality of the system. In H[x,{B}]= Efo dsdsBsg V(X(s,t) =x(s',1)).  (4)
this way we attempt to describe a globular state. Of course,

\kl)vet tr:]annot descrlbelz t_hé-pomt ;“?‘”5'“0“. n sugh a moc(jj(_eflf, We takeBsy Gaussian, with varianc®?. The quenched av-
ut here we are only interested in transitions between di erérage oveB,, is performed as
ent globular states.

Our formal starting point is the Martin-Siggia-Rose gen-
erating functional for the Langevin dynamics of the model
[27-30, written, for convenience and compactness, in it
supersymmetric forri31]. To derive equations of motion for
correlation and response functions we use a variational al
satz with a quadratic action. This approach has been used to

. ; T 1
study the problem of a manifold in a random potential, in V(Ax)=(—
both static§32,33 and dynamic$34,35. 2mo

In paper | we showed that the RHP model exhibited bro-
ken ergodicity (formally, a spontaneous supersymmetryd is the dimensionality of the system and the range of the
breaking in a low-temperature dynamical glassy phase. Inpotential. Larggsmal) o corresponds to a lon@hory range
the present study, with interactions biased in favor of a nativgotential. In particular, foor—0, V(Ax)— §(Ax), and we
state to a controlled degree, we find, in addition, a well-recover the potential used in Ref§,7,18. Here, and in the
folded phase, if the bias is strong enough. It can coexist withollowing, Ax refers to a monomer-monomer distandex
either the disorderedrandom-globulg state or the frozen- =Xx(s,t)—x(s’,t) for a pair of monomers, s’.
globule glass phase, depending on the temperature. Further- We use reasoning similar to that employed in statics to
more, we find that at low temperature the native phase cadefine P({B}) (see Refs.[2,24-2§), adapting it to the
itself undergo a dynamical freezing into a different glassyrandom-bond model:
phase. In this phase the conformation of the protein is always
highly correlated with the native state, but cooperative ki- 1 1 5 )
netic constraints still lead to a divergent equilibration time, ~P({B})exp — T_OH[XO*B]_ Ef dsdsBg,/2B%/,
as for the frozen-globule state. (6)

<( : ))B:st>s’sts’(’ )P({B})

SV(Ax) is a short-range potential, and, for simplicity, we take
r%t- to have a Gaussian form, as in REi6],

dr2
e—(Ax)leo. (5)

Il. THE MODEL where T, is called the selection temperature axg(s) is

some arbitrary native state conformation. Thus the symmet-

Sric bond distribution of the RHP model is distorted so as to

give bigger weight toBgy's, which are attractive between
Ix(s.0)/gt= — SHIX]/ SX(s.t) + n(s.t). 1 monomers .that lie close to each other in the c'onfl'guratlon

(s.t) [x)ox(s,t)+n(s.t @ Xo(s). Explicitly, the properly normalized({B}) is given
Here x(s,t) is the position of monomes at timet. The by
monomers are numbered continuously frem0 to s=N.

7(s,t) is the Gaussian noise P({B})=(27TBZ)N(Nl)"‘exp{—ﬁSBZMJ dsd€V(xo(s)
(n(s,t)n(s',t"))r=2Td(s—s")s(t—t"), (2)

The model is defined as follows. The Langevin dynamic
is assumed to be governed by a Hamiltonidink],

_ )2 __ _ 2
resulting from coupling to a heat bath at temperaflire Xo(s")) ,BOIZJ dsds Bsy V(Xo(s) = Xo(s"))

The Hamiltonian H[x] contains a deterministic part

Ho[ X, ] and a random patt[x,{B}]. Ho[x,x] is defined _1/2f dsd<B2./2B2
as ss’

: ()

TN 5 5 from which we see that the distribution &y is peaked

HolX,u]= EL dsi[ox(s,)/as]"+ ux(s,)%. (3 aroundBly "= — BoB2V(Xo(S) — Xo(s')). Thus, if monomers

s and s’ are close in the native stafeV/(xqy(s)—Xxo(s’))
It describes the elastic properties of the chain and a confine# 0], their coupling constarBsy is pulled down, as in a Go
ment potential, which fixes the density of the protein. Themodel[36,37]. For To,— % we recover the RHP model. For

radius of gyrationg~,Lf1’4, so, in order that the protein is Tq—0, P({B}) picks a specific set dBsy . For this set, by
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construction,xq(s) is the deepest minimum ofi[x,{B}] Of course, the solution can be obtained without the aid of
given in Eqg.(4). This is the mechanism that embeds thethe supersymmetric formalism, but we find it conveniently
native statexqy(s). compact.

This mechanism is somewhat arbitrary. However, the fact As noticed by De Dominici§28] the expression in E48)
that the strength of embedding of the native state is conis already normalized, so the average over the quenched dis-
trolled by the single parametél, facilitates the study of orderBgg can be done directly on E@8):
transitions between random and nativelike stétesl, as we
will show, of possible coexistence of such phases _ —(S[P]+SH[P X))

So far, the configuratiory(s) is arbitrary. Thus(s) has (OLe)me f beO[le 19
to be considered a quenched random function, to be average
over just likeBgy in order to obtain generic results. We will wqhere exp{ S xo))=(exp(-S P % ,{B}]))s, and
carry this average out later. B2

All our results are obtained in the thermodynamic limit, S,[d,x,]=— —f dsds
where the lengtiN of the heteropolymer chain goes to infin- 4
ity. Also, for simplicity, we join the polymer ends to form a
ring. This neglect of end effects is valid for a long chain.

2
fle(CD(s,l)—CIJ(s’,l))

1. MAPPING TO THE FIELD THEORY —®(s",1))V(Xe(S) —Xo(s)). (16)

To solve the model we map the Langevin dynamics onto &hus, the native statey(s) enters the action in the second
supersymmetric(SUSY) field theory. Using the standard term of Eq.(16). Note that there is no ternB3V(xo(s)
Martin-Siggia-Rose(MRS) formalism [27-30 and SUSY  —x (s'))? since it gets cancelled by a similar normalization

notation[19,20,31,3§ the dynamical average of any observ- factor for P({B}) in Eq. (7). It is useful to rewrite Eq(16) as
able, for fixed{B}, can be calculated dsee, e.g., paper | for

detail B2
’ S,=— Tf d¥x,dd d1d2 ALY (x,y)ALD(x,y)

(O[®])1= | DDPO[De ST, ) 2
T J —@J di dy d1 A{D(x, )AL (xy), (17)

with the notation A3 (X,y)=[dsf(®(s,1)—x)f(P(s,2)
where —y), AR(x,y)=[dsf(®(s,1)—x)f(Xo(s)—y); fe{V,s}.
In the long-chain limit, as discussed in papeftahd refer-

, ¢ , ences therein one obtains a self-consistent field theoretic
S[@]=1/2| dsdlds'd2d(s,1)K;; @(s'2), (100 formulation, withS, simplified to

q@,xo,{s}]:llzf d1dsdeBq o V(D(s,1)— (S’ 1)), 52[‘1""0]:877 dxd’yd1d2[(AL(x,Y) AL (x.y)
(9 —AD (Y} (AD(x.y))
and — (A (x,y)AD(x,y)]
K =0120,5K3, Ki=T[u—(al99)?]-Df, (12) + BOZB f dixddy d1[ (ALY (x,y) )} AD(x,y))
p@=or— " & 13 — A YHAD (x.Y))

+26, - .
2000 I o ~(AYYAZ(xY)]. 18)
The ®(s,1) denotes a superfield, All averages of the typéA(V'5)> have to be calculated self-
_ _ — consistently withS{ @ |=S;[ P ]+ S,[ P ]. (We have abbrevi-

O (s,1)=x(s,t1) + 01 7(s,t1) + n(S,t1) 61+ 0101X(S,t1), ated the double averadé-)r)g simply by(-).) In the limit
1 N— o Egs.(15) and(18) provide an exact description of the

o ) ) - dynamics for an arbitrary native statg(s).

containing the physical coordinatés,t), the MSR auxiliary

field x(s,t), ghost fieldsz(s,t) and (s,t) that enforce the |\, AVERAGE OVER NATIVE STATE CONFORMATIONS
normalization of the distribution, and the Grassmann vari-

ablesg and §. We use the notation=t(6,,6,,t;), likewise It is impossible to solve the model for a general native
fd1=[d6,de,dt;. state configuratiorxy(s). We therefore consider a distribu-
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tion of native states and perform the average

<O[q’:Xo]>ZJ DXo{O[ P, o]y~ Sol*al, (19

where Sy[ Xo] weights each native-state conformation in the
ensemble as

1 S
Sol Xol= Ef dsx(S)Kgg Xo(S"), (20

with
8= Sss (po—3219s'?). (21)

The parameten, fixes a size of the globule in this en-
semble,

(Xo(8)?)= (22

1
2\po

PHYSICAL REVIEW E67, 051915 (2003

The fieldh(s’,t") entering the description of response func-
tion is an arbitrary external field that couples x¢s’,t’).
The fact that only two correlation functions survive is related
to Ward identities originating from SUSY invariance of the
original actionS,

The supersymmetry of the theory is associated with equi-
librium. One of the Ward identities resulting from SUSY is
the fluctuation-dissipation theorefRDT), which relates cor-
relation and response functions. In the present case, the
glassy state manifests itself as a spontaneous breaking of
supersymmetry, leading to a modified FDT, as in previous
treatments of other mode[81,34].

GSS describes the overlap with the native state. Due to
the Ward identities, only a single correlation function sur-
vives (see Appendix A for detai)s

3 = (X(s.x0(8)) = d(s,t1:8)). (30

Similarly, the native state ensemble is described by

55 =(xo(8)Xo(s"))=T(s;8"). (31)

Since the polymer ends are joined, there is translational in-

variance along the coordinate and(x,(s)?) does not de-

pend ons. Thus, with this procedure, the dynamical generat-

ing functional for the problem is calculated as

e Fayn— f Dx Dde (Solxal +SiPI+S{exa) (23

There is some formal similarity between the dynamical func-

tional Fyy, and the static replica partition function. The in-

G$S alone is sufficient to describe the RHP model. Here we

need the two extra functior@$3 andGSS .

Also, in what follows, we exploit the translational invari-
ance along the coordinate and define Fourier transforms of
all correlation functions:

X " — % ik(sfs’)x
(s,s") 27re Ko

tegration oveDX, enters in the same way as the extra rep-

lica in the static formalism.

V. CORRELATION FUNCTIONS
The SUSY correlation functions

ss’

12 =(P(s,1)P(s',2)), (24)
35 =(d(s,1)x0(8")), (25)
55 =(Xo(S)X(8")) (26)

contain all the information we are interested in.

$$" encodes 16 correlation functions, out of which only

two, correlation and response function, are independent and

nonzero:

35 =C(s,t1:8' 1)+ (0~ 01)[ O,R(s,11;8' 1))

—01R(s' ty;s,t))], (27
with
C(s,t;s8,t")=(x(s,t)x(s',t")), (28)
R(st;s',t")=(x(s,1)X(s',t") _ Hxst) (29)
e >_5h(s',t')'

whereX=C,R,¢,I".

VI. EQUATIONS OF MOTION

To solve the model we proceed by making a Gaussian
variational ansatztGVA), assuming that the field® are de-
scribed by the approximate action

1 ,
Svar=§f dldsd2ds ®(s,1)(G1)55 d(s',2)
+f d1dsdsS ®(s,1)(G )55 Xo(S')

1 —1\s8 '
+§J dsdsXxo(s)(G™*)gg Xo(S'). (32

Technically, this implies the following approximation for
den:

den%<s>var+|:vara (33

where
e*FuarEJ\ DXOD(I)e*SUar:e(d/Z)TI' InG, (34)
<'>var:eF"arf DXODq)(‘)e_S”a'- (35
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The stationarity condition and
SF dyn B2 ~. BZN
s 36 _ + )2 2_ - —d2
563 (36) V2)= - (z+0) %% B’=——(4m) (42

translates into the equation of motion for Green’s function

Performing the variational ansafi.e., evaluating Eg.

Gii’ [see Eqs(43)—(46)]. We have derived identical equa- (36)] results in the following equations of motion:

tions of motion by using the approach of REB5]|, where
standard field theoretic identiti€g.g., (® S/ 5P )=0) are
used. It can be shown that for quadréig,, the two proce-

dures give the same result. We omit this analysis here to save

space.
In a corresponding equilibrium problem, the stationarity

condition is also an extremum condition and provides a

bound on the free energy. Here, sirfeg,, contains integra-

tions over complex fields and Grassmann variables, the GVA

does not give a bound oRyy,. Nevertheless, it is the first

step in a systematic approximation procedure, as outlined in

Appendix B.

The GVA has been applied to the problem of a manifold
in a random potential, in both stati¢82,33 and dynamics
[34,35. The method is exact when the dimensionality of the
manifold is infinite but is only approximate for finite dimen-
sionality. Nevertheless, even for rather low dimensionality it

has been shown to be a very good approximation in the

[T(u+k?)—DP]GK,= 610+ 2 f d3V' (B1g) (G~ GYy)

+2B0V (B1o) (G~ Gy, (43

[T(u+k?)—DPIGK,= Zf d2V' (B1)(G5y— G5o)

+2BoV' (B1o)(GEy— GYp),
(44)

(1o+ KOGl 28, [ 42V (B0(Gl-Gh).  (45)

(mo+k?)Gio=1+2p, f d1V'(B1o)(G5o— Gip), (46)

random-manifold problem, where it has been checked nuand after disentangling the SUSY notation one dsé® pa-
merically [35]. We have shown in paper | that the presentper | for related detai)s

model is closely related to the random-manifold problem.
Thus, we hope that the GVA will also be reasonable here,
although we have not strictly checked its validity.

Using Egs.(33), (32), and(9) gives the following expres-
sion for Fgyp,:

d U J d J !
denzzf dsdsKSs Gss +§f dsdsd1d2KSS GSS

d B2
—5TrinG- TJ ddYyd1d2(AY(x,y))

BZ
< (AGoy) 2

J ddxd?yd1d2(A{Y(x,y))

X(ALQ(X,y)), (37)

where all averages are to be calculated uspg [see Eq.
(32)]. Performing averages, the fourth and fifth term on the
right-hand side of Eq(37) become

Fin=— 5y | dld2dsd$V[(B3,+B5,/2], (38
Fo=— BT"df d1d2dsds V[(BSo+BS/2],  (39)
where
BL,=([®(s,1)—P(s,2)]%)=Gii+G33- 2G5, (40
Bio=([P(s,)—Xo(8)]%) =G+ G~ 2G5, (4D)
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[T(u+k?) +aldt]Cy(t,t")

t
—2TR(t" )+ zf AtV [B(t,t") JRe(t' 1)
0

+ 4f(:dt”V"[B(t,t”)]r(t,t”)[Ck(t,t’)— Ci(t",t")]

—2BoV'TAMIICK(tt) — ()],

[T(u+k?) +alat]R(t,t")

(47)

= 5(t—t’)+4j0tdt”v"[B(t,t”)]r(t,t”)

X[Re(t,t") =R (t",t") =28V [A(t) JR(t,t"),
(48)

[T(u+Kk?) +aldt]dy(t)
t
:4Jod"’V”[B(t.t”)]r(t.t")wk(t)— Bi(t")]

+2BoV'[AMIIT = (D], (49

t
(1o K2) (1) =280 Jodt"v[A(t”)]Rka,t"), (50

(ot kA)Ty=1, (51)

whereB(t,t") andA(t) are defined as
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B(t,t")={((X(s,t) —x(s,t"))?) The following k-integrated quantities will also be useful:
=C(s,t;s,t1)+C(s,t';5,t")—2C(s,t;5,1") _ dk_
o i | gpbe Ims0xs0), (6
A(t)=<[X(S,t)—X0(S)]2> dk
=C(s,t;s,t)—2¢(s,t;5) +1°(s,S). qEJ qu:inl tlm(x(s,t)x(s,t+r)>, (61)

Note that due to translational invariance with respecstto dk
both B(t,t") and A(t) ares independent. The equations of Ef = lim lim(x(s.HIX(S\t 62
motion for C,(t,t') and Ry(t,t’) are almost identical to Go= | 57 Yok O Hw< (SOX(SAD), (62
those for the pure RHP model. Coupling to the native state

enters through the terms proportional@g. Again, for large dk

selection temperaturgg,—0 and one recovers the RHP gozjz—cpk: lim {X(s,t)Xo(S))- (63
model. ™ too

VII. EXTRACTING ORDER PARAMETERS q measures the size of the globutpmeasures the persistent
correlation in the TTI regimeg is the asymptotic correla-

tion in the aging regime, ang the overlap with native state.

Also, it is useful to define

The equations of motion are coupled integrodifferential
equations with initial conditions given bg,(0,0), ¢(0),
and (we use Ito’s conventionR(t+¢€,t)—1 ase—0. To
solve the equations analytically we have to consider several b= 2(5— b 2(G—
assumptiongwhich can be checked by numerical soludion =2(qa-a), 0=2(q= o),

First, we make thdrather strony standard assumptions
from aging theory for spin glasses about the asymptotic be- e o\
havior of the solutions: In the regime of time translational a=lim([x(s,t) =xo(8)]%) =0~ 2¢+ 2 e (69)
invariance(TTI), o o

(64)

lim Cy(t+ 7,t) = Cy(7), (52) Third, we assume that the generalized fluctuation dissipa-
toe tion theorem is valid in the form

MR (t+ 7,t) =Ry (7), (53 R x dCi(\)

t—w R(N)= qu—d)\ ) (66)

and, in the aging regime,
wherex could in principle depend ok and C,. However,
lim Cy(t, A t) = (M), (54) related models have been studied in detail and they exhibit
t—e one-step replica symmetry breaking wittkéndependenk.
This one-step replica symmetry breaking ansatz in our dy-

1,\ .
lim Ry(t A1) = TRK()\)- (55) namical study translates exactly to EG6).

t—oo

o ) ) VIll. RELATING ORDER PARAMETERS
The validity of these assumptions could be checked numeri-

cally. Since this has been done for equations of similar type Fort=t’ andt— Eq.(47) gives
elsewherd 35|, we omit it in the present analysis.

Second, it is well known that asymptotic solutions of such
equations can be characterized by a few order parameters
[34,35,39—-41 They are defined as

~ 2 ~ 2
T(ptk3)o=T+ TV (0)(1=x) (A= a0+ 7V (bo)

XX(Qx— tox) — 2BV (3) (Qk— ). (67)

qi=lim Cy(t,1), (56)
t—e With t=t’+ 7 andt’ —c and thenr—o Eq. (47) becomes

k= lim Ck( T), (57) 2 ~ 2
= T(u+ k) @=7V (b) =XV (bo) (G0 + 7V (bo)

= C ~ )
Gou I W), 8 XX(G— Qi) ~ 280V () (G~ ). (68)
o= lim @y (t). (59)  Equation(47) in the aging regime’ = \t, first for t—c and

t—oo then\—0, gives
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2 ~ 2 ,
T(u+kA)ox= 5V (Do) (L =) (Ge— ) + TV (bo) a0 Y0 2 e
~ 2 472,372 4\/E o
XX(Ak—dok) = 2BoV' (a)(dok— Pw)- 1+ \/—
(69) H
2
Equations(49) and (50) result in two equations fop : 1Y M e © e
quations(49) and (50) q o y ;(1”\&)%: r°+(:>
) 2 M M M Bmoo\p
T(utk )(Pk:T_OV (@)(T'k= ey, (70)
Mo
2 2 x| 2+ T) ’ (79)
2 — _ T Ny = 7
(oK) gy TTOV (a)X(dk— oK)+ TTOV (a)(dx—d)-
(71 _ >
=u+="V'(a), 79
They are equivalent; one can choose to solve for the order R TTy @ 79

parameters working with either E¢Z0) or (71). This seems

a rather remarkable coincidence. We believe that it originateand the combination of Eq$72) and (75) gives

from the SUSY invariance of the original acti@ For ex-

ample, a similar comment holds for Eq47) and (48); they 0=r(1)[T2+b3V"(b)]. (80)
are equivalent in the TTI regime and one can derive one

from the other. The “conspiracy” of Eq449) and (S0) ot gyrthermore, the overlap with the native state is given by
contradicting each other is very likely a similar phenomenon.

Equation(48) for A=1 reduces to

1 M
. ~ 2 ~ 4V"(b). 1 ~
R(1D)(p+k+2)=—(q—a——T(1), (72 _ ®
T? ¢ : (81
where 1+ —
o
r()‘)EJ ZRK()‘) (73 All overlap order parameters are positive. However, this re-
sult is not obvious and has to be obtained after some algebra.
and? is defined by These equations have two kinds of solutions. In one kind,

b=b,, so there is no glassinesaging. For this kind of
2 solution, the parametexis irrelevant. We call such solutions
2=x[V'(b)=V'(bo)]. (74 “ergodic.” (While it will turn out that some of them are not
T truly ergodic, in the sense of describing states where the
entire configuration space is visited with Boltzmann prob-
abilities, they violate ergodicity in a rather trivial way, like a
ferromagnet below the Curie temperature. We could call
1 them “non-glassy,” but we prefer not to use a negative term.
b= ' (75) For an ergodic solution, witb=b,, % =0. Furthermore,

r(\)=0, so Eq.(80) is trivially satisfied. One then has to
solve the four equation&5) and (77)—(79) for b, q, a, and

+— , (76) K

Solving these equations for the order parameters gives

The stability of such a phase against glassiness can be
determined using the analysis we presented in pageed

Fig. 1). There, we studied a model with no native-state bias
in its interactions To= ) for finite x. The boundary of the
glassy state as a function @f has a form qualitatively like
that in thep-spin glass as a function of fie[d2,43. In the
present model, the presence of the native state enters the

calculation solely through the replacemenfoby . There-

fore, if a particularT and u fall in the glassy regimdthe
(77) region below the full and dashed linde Fig. 1, the ergodic
ansatz has to be given up.

Sk
X

<

+

™M

ol
Il
N
N
_|
N
=1
W
N
N
'_\
3
P
T
15 ==
N

SIS

=z

051915-7



Z. KONKOLI AND J. HERTZ PHYSICAL REVIEW E67, 051915 (2003

section, we study glassy solutiofwithin the one-step aging
ansatz of Sec. Vjland identify the regions in the parameter

1.00 space where they hold.

IX. ERGODIC PHASES

0.75
" For ergodic phases, Eg&/5)—(79), reduce to
o
E
E 0.50 1 3
b: b():_, 83
| Vi
0.25 0 =
0.95 L1 Hon Py 2
0.0 1.0 2.0 3.0 o
l_ —
00%0 20 40 60 ejg 100 120 140 160 180 20.0 = 1 n V(1 \/;) N 1 M
1 - = ~
‘ 2Vi AT 4o o
FIG. 1. Boundary of the glassy phase in theT) plane.x is in o~
units of we, andT in units of T,,,4. The boundary is same as in the M
case of the random-heteropolymer model from paper |, except that 2
native-state correlations lead to the replacemeng.oby u. We «| 24 @ 1 @ (84)
have used parameteds=3 ando=1. T, IS the maximumr for ~ ~ !
which Eq.(80) has a solutiorisee paper | for further detajlsu. is M M
the value ofu whereT () attains this maximum. The solid part of
the boundary is an AT line, and the dash-dotted part marks a tran- 1 V’(l/\/i)
sition wherex—1. Approaching the AT line from belowh—bg a= + —
—0, while x remains strictly less than 1. Approaching the 1 2 ,TL 4T2,ud3/2
line from below, x—1 smoothly, whileb—bg is discontinuous
there. Above both linesh=b, and x is undeterminedany x+ 0 1 1 P u
solves Eqs(74)—(80), and no physical quantity depends oh fthe + > ~o 1+2 7o
same holds for all figures where these lines appear. 4 //.L0 1o P P
1+ —
The instability can occur in two ways, according to I
whetheru is bigger or smaller than the critical valye, . ,
Above ., the line separating glassy from ergodic regions is M Mo | M Mo
an Almeida-Thoules$AT) line; below it the stability condi- t2-\/ =z 12\ =] | (85
tion M M M M
2 3y ~ 2
T°+b°V"(b)>0, (82 p=upt+z=V'(a). (86)
0

is violated. Foru<ju., there is no AT instability. The tran- They can be solved numerically: given xo, T, andT, one
sition is like that for the completely random heteropolymer.Can find 72, which, in turn, determine§, b=b, (equiva-

To find such a transition, we have to solve for a glassy phas _ o . X
characterized in part by a value of the FDT-violation paramt?ently G=Yo), ande. However, it is possible to gain some

ter x<1 and then find wh in th i analytic understanding in a few soluble limits.
eterx and then find where in the parameter space In this discussion we will concentrate on the limit of small
—1. In the region where the<1 solution exists, the asso-

ciated ergodic phase is unstable and is replaced by the glasgy As wg noted in paper |, if we wantitl(/)4conf|memodno-
, we needpu

one. mers4/dW|thin a gyration radiu&/ﬁoc,u /
In a glassy phase, aging is preseiftt)#0, so the quan- N - Thus, for a long polymer.—0. We will also take

tity in brackets in Eq(80) has to vanish, i.e., the AT condi- #~#0 0 s_umphfy the algebra a bit. o~

tion has to be satisfied as an equality, rather than an inequal- The pair of Egs.(85) and (86) fully determine as a

ity. This so-called marginal stability condition determirtes function of T andT,. For uo=pu they take the form

as a function of temperature. In this case we have three more

unknowns,X, by, andx, making a total of seven, and seven 1 B2 1 n
equationg74)—(80), to solve for them. a(u)= + — — + 1+—1,
We look for ergodic solutions first in the following sec- 2\/i 8T2u3 A o+ p Y242+t 4\/Z w
tion, and we examine their stability. Then, in the following (87)
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~ B2 Furthermore, to check that the polymer does not freeze
pn(a)=pu+ o (88)  into some other conformation, we calculate the normalized
TTo(o+a) overlap between two configurations taken at very different
~ times,
Givenpu, T, T one can find the overlap with the native state
¢ and the size of the polymer from E(B1). lim (x(s,t)x(s,t+ 7))
Tt—o q
cosf' = ==. 94
A. Random-globule state [lim(x(s,1)%)]° q 9

t—oo

It is immediately evident that when both the temperature
T and the selection temperatufg are large,u~u in Eq.  After rewriting

(86), leading to a random-globule solutia=b= "2 q

=u" Y2, ¢=0. What is not so obvious is that in the _ b 1

—0 limit a solution very close to this exists all the way ag=1-—=1-——, (95
down to very low temperatures, even for smaj. In this 29 2\ uq

subsection we examine this state in detail. ) ) )
We look first for solutions of Eqg87) and(88) with the ~ and. using Eq(92), we get co’=O(a—1). Again, asu
ansatza= 7/ fixed andu—0. We call this the random- O €S —0. This confirms that the ansatz=((1) and

globule ansatz, since, as will be shown, the polymer does ndf. 9 leads to a melted random-globule-like phase. This
have any fixed conformatiofit is melted, and on the aver- phase is identical to that found at high temperatures for the

age the conformations it adopts have zero overlap with thgor_pﬁéetgﬁ dﬁ?ng??]:etrirsgrﬂl);?:;t? rl?ez?se[lllon the fact that
native state(Strictly speaking, this is the only truly ergodic Y P P

. we can solve Eq(90). Clearly, for u—0 a solution can
phase we find.Fora we get, always be found, namelyy=1. Since the physically rel-

1 evantuxN~4 we can always satisfy this equation, for any
3+~ To, in the limit N—oe.

a=— +O(ul9272) | (89 We now address briefly the question of what happens for

Jul 4Va finite N (and ). One can easily see that E@O) has two

, _ o _ solutions whenu(@~2#/(TT,) is not too largge.g., by plot-

which, after inserting into Eq(88), gives ting the left- and right-hand side as functions ®f. The
= A2+ 1 solution close to 1 is lost when the slopes of the left- and
w~1+ B_M(d_z)m 4\ (90) right-hand sides become roughly equal. Evaluating these

TTo 1 ’ slopes leads to the condition
S 3
382 d (d—2)/4
Equation(90) can be used to calculate as a function ofu. 4TT, 2 +t1liu <1 (96)

One can see easily that—1 whenu—0. This shows that
our ansatz is self-consistent in the limit of small Also, for the existence of a random-globule-like state.

Egs.(81) and(84) become Some caution is in order. Working this out for finii&
d=3, and an average density of 1, we find that inequality
1 [a—1 (96) is violated below a temperature
= T+(9(a—1)2, (91)
M B T 1/215§2N71/3 o
<\s] BTN 97
q=——=[1+0O(a-1)]. (92) , _

2\/ﬁ With the small power oN ™%, one has to go to quite lardé

_ to make this temperature very low. Thus our statement that
The normalized overlap between the polymer conformathe random-globule-like state exists for all temperatures in

tion and the native state is: the u—0 limit may be of limited relevance for real three-

) dimensional heteropolymers of the length of typical proteins.

lim (x(s,£)%o(s)) Nevertheless, here we are just considering this simple limit.

cosf= e _ ¢ We now discuss the stability of this solution. In the large-

li 2 2 N limit, it is locally stable against spontaneous formation of

im(x(s,t)“)(Xo(s)%) 1 o o
- ~ a nativelike state at any and T,. However, it is unstable

2\/; against glass formation at low temperatures: Since it is iden-

(93) tical with the random-globule solution of the completely ran-
dom heteropolymer problem, we can take over the result

From Egs.(91) and (92 we get cosg)~(a—1)~u® 2" from paper | that it is unstable below a temperatlige:B,
Thus, there is no overlap with native stategas:0. with the constant of proportionality of order 1. This glass
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temperature is independent ©f. (In Fig. 1 this is the tran-
sition atﬁ—>0.) Thus, wherever the system is in a random-
globule-like state al>T,, it will no longer equilibrate if
the temperature is lowered beldWy . Instead, it will become
glassy and its dynamics will show aging.

B. Ergodic native state

At low Ty andT, one expects that the polymer should be
very close to its native state, i.e., smallTherefore, we also
look for such solutions of Eq$87) and(88). We will try to
solve Eqs(87) and(88) in the limit wherex— 0 andu stays
finite. The limit w— 0 turns out not to involve any subtleties
when . is kept constant, so we will just set=0 from the
outset. Equationg37) and (88) become

5 3 B2
= —+ , 98
aw) 4 \/Z 8T2 32 o+ 7~ 12)d2+1 (98)
- B2
a)=———1. 99
,LL( ) TT0(0'+ a.)d/2+l ( )

These equations can be solved foras a function ofl and
To. However, one has to keep in mind that-0 has been
taken. This implies that Eq$81) and(84) become

1 ~ 1
%—’ q%—,
NI NI

and, inserting Eq(100) into Eq.(93), the normalized overlap

(100

PHYSICAL REVIEW E67, 051915 (2003

Bo\ (@ Bop ®)
I3)(';ﬁn ___________ \ Bgﬂn ............
r“ unstable
— - —HHH— -
10 Ha n Hoin Mat Fl

o)
l3;]nax

|3rnin
1

Bglin l3g\in

FIG. 2. Analysis of ergodic-native solutionsé(ﬁ,T) as a func-
tion of ﬁ for four values ofT (see text for explanationPanel(d)
shows the existence of the two extra solutiémise stable, the other
unstablg in the rangel BT, B7®. Graphs are qualitative, and no
numerical value is associated with the axes but, in principlés

expressed in units af ~2 and T in units of B/ o(4~2"[see the third
paragraph after E100) for discussion of units

The working strategy for solving the equations is as fol-
lows. For fixedT, one can consideF, as a function ofu.

between native state and polymer conformations becomeBhis can be easily done by inserting the expressionafor
cosé~1. Furthermore, because of its large overlap with thefrom Eq.(98) into Eq.(99), thus writing 8o=1/T, as
native state, the polymer is essentially frozen. This can be

seen by calculating the normalized overlap between two

polymer conformations after a very long time interval, as in
the preceding section. Inserting EG00) into Egs.(94) and
(95) gives co¥ ~1—\u/m—1.

There is interesting behavior associated with the limit
—0 for very long polymers. When the polymer gets longer
and longer N—x) a finite part of the chain is not in the
native state conformation, sineestays constant. The rest of

the chain is in the native-state, which can be seen from th¥

fact that overlap with native state approaches 1. Thus, in th
limit of a very long polymer, the fraction of chain not in the

Bo(w, T)=Tu[1+a(u,T)]¥?* (101

The four panels of Fig. 2 shows the shapeBgfu,T) as a

function of i for four different temperatures. We want ulti-
mately to construct a phase diagram in thg&, (T) plane.
Therefore we have to specifly(one panel of the figujeand

Bo and ask whether one or more solutions, i.e., particular
alues of, which solve Eq.(101), exist. For example, in
panel(a) in Fig. 2, a horizontal line aB,>Bg"" intersects

Bo(w,T) curve at two places, indicating two solutions

native-state conformation becomes negligible: the recipe foe ﬁl,ﬁz- To make the figures more readable we have shown

biasing the coupling constanB;y described in chapter Il
works best for long polymers.

In the following we will proceed with the solution of Egs.
(98) and (99). Before continuing, it will be useful to com-

pactify notation a bit. Making the change of variablés
=X/o for X=b,by,a,0.q, ¢; Y=Yo? for Y=p,u; andZ
=709"2%B for Zz=T,T,, we get equations of the same
form, with X—X, Y—Y andZ—Z, but with =1 andB

such a horizontal line, at a particular value 8§, only in

panel(a). If this horizontal line is moved belo@™, it will

never intersect th@o(1, T) curve. Thus, we can see that for
every T, there is a valuggg"(T) below which no solutions
exist.

We proceed with the analysis of Fig. 2. For sufficiently
high temperaturefpanels(a)—(c)] there are exactly two so-
lutions for all Bo>pB{"". Of these, the one with the larger

=1. Thus, without loss of generality, we can choose unitsvalue of 1 is a stable solutiorflocal free-energy minimuin

with =1 andB=1 (and remove the hatsFrom now on we
do this.

describing the ergodic-native phase. For example, the solu-
tion labeledu, in panel(a) is of this sort. The one with the
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T 0.8 complex behavior where double-minimum structure appears.
0.7 We have found numerically that this happens beldw
0.6 ~0.20. Here the behavior arougd" is just as in the other
0.5 cases, but we note that at this temperat@géu,T) has a
0.4 second local minima at a smaller valuesof Thus there is a

rangeB "< By< B for which there are four solutions. The
0.3 rightmost one is stable and describes the ergodic-native
0.2 phase, as before. Moving from right to left, the solutions
0.1 alternate between stability and instability. Thus the second
solution from the left represents a locally stable conforma-
tion. It is also correlated with the native state, sinceis
finite (though we always finqu<1 in three dimensions
o 545 _ The remaining two solutiongwith _&Bo/ﬁﬁ<0) .represent
’ = US states(local free-energy maximabetween it and the
0.5425 random-globule phase in one direction and the ergodic-
0 .54 native phase in the other.
Plotting Bg"" againstT, we obtain the stability boundary
0.5375 indicated by the thick solid curve in Fig. 3. Within our
0.535 present assumption of ergodicity, everywhere to the right of
0 5325 this line the ergodic-native phase is dynamically stable. One
can invert the relationgg"(T), obtaining a transition tem-

1.43 1.24  1.45  1.26 1.47 BO peratureT,(By), the maximum temperature for which the
ergodic-native phase is dynamically stable. It is separated

FIG. 3. Regions of existence and stability of ergodic-native so-from the(also stablgrandom-globule phase by a barrier, the

lutions. T is in units of B/a*@~ 2" and g, in units of 0@~ 24/B. top of which is described by the unstable solution.

Panel(a): Ergodic-native phase and US solutions exist everywhere [N Fig. 3 we also indicate the region in thg(, T) plane

to the right of the thick solid curve. The ergodic-native phase iswhere the second locally stable solution is found. This region

stable against glassiness everywhere there except in the diagonalias the form of a kind of sliver extending out toward large

cross-hatched region. The US states are also unstable against glag8jr at low temperatures.

ness there, and additionally in the horizontally cross-hatched region. So far we have not examined the stability of these solu-

The vertical cross-hatching marks the region where the extra phagéons against glassiness. As indicated above, we do this with

seen in riane[d)sof Fig-l(i) is ftl)und.(This pfhf;se is In%ver stable the help of Fig. 1: Stable solutions cannot lie in the range

against glassinegsPanel(b): Enlargement of the circled regionin ~ _~ _~ : o ~

panel (a). The AT line is tangent to the ergodic phase boundaryg;égijféﬁg'Slgel,::%r i,x:ﬁ;?el,l?r"lltSa?ur; tmhzzliﬁg ﬂgtitgee-

(thick ling). At its maximum, atT,,,y, it becomes ax=1 line . .
(dashed-dotted line, see also Fig. Lowering T from the white state solutions found for the range 8} corresponding to

region into the horizontally cross-hatched region results in two dif-values ofu betweenu, and uar are not acceptable: they
ferent types of transitions depending on whether one crosses the Afiolate the AT stability conditior(82).

or thex=1 line. In both cases the US state becomes glassy. Similarly, in panel(b) the US solutions found for a range
of By values can also be seen to lie in the forbidden region.
~ ~ . And the intermediate locally stable states that we identified
_smaller value ofu [e_.g., the one labeled Iqty; in panel(a)] in panel(d) always lie in a glassy region.
is unstable. It describes a free-energy maximum between the |, Fig. 3 we also plot the AT ling80) in the (8,,T)
minima at the randoEn—gIobuIe and ergodic-native states. We|ane  indicating the regions where the various kinds of er-
will call such states “unstable stationaryabbreviated U5 ¢qic solutions are forbidden. For the native-phase solutions,
(We have not done a static calculation to show this, but thgpo torbidden region is a strip mostly at low values Bf
situation here is analogous to that in an ordinary ferromagn%iagona"y cross-hatched region between thick and AT)line
below the Curie temperature. There, one has three solutiongqever, it “wraps around” at the leftmost part of the region
of the mean-field equations, one with positive, one with,yhare those solutions are found.
negative, and one with zero magnetization. The middle one, e forbidden region for the US solutions occupies most
with zero magnetization, is unstab)IeTh_e US state has @ of the region where these solutions occur belByy,,, the
lower overlap with the native conformation than th(i ergodic-maximum temperature for a glass transition shown in Fig. 1,
native solution does, because it has a smaller valye.&s including the entire portion of it below, the glass insta-
Bo is increased from below througBgy", the native-state bility temperature of the random-globule state.
and US-state solutions appear together and separate. For theThe structure in a tiny region near the minimum value of
temperatures of panel@—(c), they both exist for all3, B, for which ergodic-native solutions are found is a bit com-
> B, plicated and cannot be seen in the top panel of Fig. 3. There-
Panel(d) (at the lowest of the temperatujeshows a more fore, the lower panel shows an enlargement of this region.
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In summary, we have found four kinds of ergodic solu- As in our analysis of ergodic solutions in the preceding
tions. One essentially describes a random-globule state. It isection, we will try two types of ansatz: one wifla/u
Ioca_lly stable(in the_ Iimif[ of a large globulgat all T and B, — const asu—0 and one with = const asu—0 leading to

. . . What we call frozen-globule and glassy native phases, re-
against glass formation everywhere below a transition tem;

peratureT,. The second kind of solution describes a phase,SpeCtlvely'
which is highly correlated with the native-state conforma-

tion, and it is stable in most of the region where the solution

exists. The third kind of solution describes a locally stable The limit Whereazzl,/lu, is kept constant an@— 0 is
state, correlated with the native state but more weakly seasily treated. Equatiofil02 stays the same, while Eq.
than the ergodic-native phase just described. It is never stable03) gives
against glass formation. Finally, there are unstable solutions,

found whenever the ergodic-native solutions exist. They de-

scribe US states, free-energy maxima between pairs of the
previously described solutions. However, in a large part of

A. Frozen-globule phase

V(b)_V(bo)%Tz\/;\/;

bob b2 109

the region where these solutions are folmaughly, every-

where belowT ,,,~T,), they violate the AT stability condi-

tion and so are not physically relevant.

Outside the regions where these ergodic solutions are al-
lowed, we have to look for glassy solutions. We do this in the

following section.

X. GLASSY PHASES

In a glassy phase,(1)#0 and Eq.(80) has to be kept,
which gives

T2=—-b%V"(b). (102
Also, Egs.(74)—(76) can be rewritten in the form
V(b)-V'(by) T2VR(1 =
b "z b lptVE 03
( ) 204
bg—b=—| ——-b|, 10
X \/;
and, withuo=u, Egs.(78) and(79) become
bo 1 1 ( M)
a=—+ + 1+—1,
2 8T2732(1+bg) 92+ 1 4\/i P
(109
w=pt ! (106)
SRR S WETSCES

Sinceb is kept fixed the only solution of the equation above
is bg—o as

(b)

bo~ ——

o

where (b) is a function, which depends only dn asu is
sent to 0. Inserting Eq109) into Eq. (106) gives

(109

a=1+0O(uld=2)4 (110
and « stays very close to 1, as in the ergodic random-
globule case. Alsop is given by Eq.(91), while Eq. (107
gives

1

q= b)+O(a—1)], 111
q 2\/;[90() ( )] (111

which can be compared with ergodic globule result, @8).
Equation (93) stays the same, and one gets @osr—1,
which goes to zero gg —0. There is no overlap with native
state. Does the system freeze into some other configuration?
To find out, we calculate overlap angles between configura-
tions at timet and a much later tim& . As discussed in Sec.
VIl, there are two ways in which the limit—o can be
taken, leading t@y# Q.

In the first limit, the equivalent of Eq94) for the ansatz
used here reads

lim (x(s,t)x(s,At))
AN t—oo %
q

cosfy= = (112

JOlim(x(s,H)%)]°
t—oo

The above equations can be solved as follows. Equation

(102 givesb as a function ofT, and then Egs(103), (105),
and(106) can be used to fintd, andu as functions ofl and
To. Onceb, and . are found one can calculatpas

o

0 1
? + 8T2:L3/2( 1+ bO) d2+1

o
22

q=

1-\/E].

i

(107

L2
4p

Using Eq. (64), we can write co§é=1—bd2a, and Egs.
(112 and (109 give cos&é~a—1, which goes to 0 ag

—0. (This behavior is analogous to that found prspin

glasseg. However, at not-too-long time scaléshorter than
the waiting time, as in Eq.(113), the polymer is frozen:

lim (x(s,t)x(s,t+ 7))
Tt—

cosag= =g.
q

JOlim (x(s,0)%)1°
t—oo

(113
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Using Eq.(64), we can write cogy=1— b/2q, and Eq.(111) By
gives cofg~1— Jubly(b), WhICh goes to 1 asu—0.
Thus, this glassy phase has no overlap with the native state.

As discussed above, there is an upper temperature limit
Tg4 (independent of5,) above which this phase melts, leav-
ing the system in the random-globule stafg.can be found
from Egs.(102 and (103), usingby—o and (104 with x
—1. This leads to a value=2/(3d—1)= (1) at the tran-
sition andTy= 2(3d—1)M2120=117(1 g 1)L +1]

= ~ 1n

Ford=3, T4~0.535. B{,“

B. Glassy native states

We also have to study the possible glassy phases with

overlap with the native state, i.e., with finife (and, accord- By
ingly, finite a) when u—0. In such a phase, as in the er-
godic nativelike states described above, the system moves
only in the neighborhood of the native-state configuration.
However, in a “glassy native” state even this restricted mo-
tion is strongly suppressed by the complexity of the local
potential energy surface, and a glassy phase results.
As in the ergodic ansatz, the limii—O0 introduces no
problems. Equation§l02) and (103 remain the same as in 3811.1

the frozen-globule case, while the equations doand ,
Egs. (105 and(106) become

b 1 1 — —
a(a)= -+ — . (114 B Par
2 81—2,“3/2( 1+ bo)d/2+ 1o, /IL

k=

w(a)= (115

TTo(1+a)¥2t’

Again, Eq. (102 specifiesb as a function ofT, and Egs.
(103), (114), and(115 determineb and,ﬂ as functions ofl
andT,. q and ¢ are given byp,q~1/(2\/).

The overlap with the native state is the largest possible:
cosfy=1, as can be easily seen from Eg3) and the values
for ¢ andq we have just given. The overlap between two
conformations at very different times also takes its largest
possible value. From Eq$112) and (113), knowing thatb, ~ — -
and b do not depend orn we have co#,=1-by2q~1 Honia™0 Har B

—bgVp—1 and cos9g=1—b/2(~q~1— byu—1. Thus, the FIG. 4. Analysis of glassy-native solutiongy(,T) as a func-
polymer is frozen almost everywhere into the native conforjon of 7 for three fixed values off (see text for explanation
mation. However, the freezing is not total, sinaen Eq.  Graphs are qualitative and no numerical value is associated with the
(114 is not zero. Furthermore, there is aging in the systemaxes(please, see figure caption of Fig. 2 for discussion of nits
sincex in Eq. (104) is not equal to 1. Full lines: By(,T) calculated within the ergodic ansds in Fig.

We turn now to the solution of the Eq$102), (103, 2). Dashed lines;By(x,T) calculated with the glassy ansatz. The
(114, and(115). As for the corresponding ergodic phases W€, ctual curves vary witfx in a way that is difficult to plot in a useful

have to resort to numerical solution; here we describe thg,.. 5, here we have distorted them in such a way as to make their
analysis. The working strategy is similar to the one presenteg ,jitative form(number and ordering of maxima and mininevi-

in Sec. IXB; the goal is to fingBy as a function ofu for  gent. When the two curves cross at a7, one has to change
fixed T since, as in the ergodic native case, extrema of thg . e ergodic to the glassy solutiéwhen approaching fror
function Bo(i, T) govern the phase boundaries. =00). Similarly, whenz= ,;, One has to go back to the ergodic

The procedure for finding value of the functld'ra(;,,T) solution. The thick dashed line indicates the physically relevant
is as follows. Equatioi102) determined as a function ofT, states(both stable phases and US states
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to be referred to a®(T). Onceb(T) is found from Eq.
(102, it is inserted into Eq.(103, which determines

bo(T, ). The value found foby is inserted into Eq(114) to
find a, and finally B8o=1/T, is calculated from Eq(115).

Thus, at each temperature for which glassy solutions are pos

sible, we can construct a graph gh(w), as we did for
ergodic solutions in Fig. 2. We have usedTHEMATICA to

do these calculations. We can use these curves, together wit
the ergodic ones previously analyzed, to identify the possible

states of the system at a given temperature gndFig. 4).
The procedure is fairly simple. At any given, only one of
the solutions is physical: In the regiQu << st One
has to follow the glassyq() curve, while outside it one

follows the ergodic one. In Fig. 4 the physical solution is
indicated as the thick dashed curve. One then looks for so
lutions as intersections of this curve with a horizontal line at

a given value ofBy, as done previouslje.g., as in Fig. 2,
panel(a)] within the ergodic ansatz.

In Fig. 4 this procedure is shown for several different

values ofT. In the first panelT lies just a little belowT .«

[as in Panel(b) of Fig. 2]. Suppose we start the ergodic

native phase at largg, and then lower3,. [In Fig. 5, this
would correspond to moving along a horizontal lifmn-
stantT) slightly above pointB in panel(b) or (c).] We can

lower B, all the way down to3§"" without encountering an

AT instability. So, just as in the ergodic analysis of Sec. X B,
the ergodic-native phase melts into the random-

min

beyondg,
globule phase.

In the same panel we can also analyze what happens t  9-54

the unstable stationary state in the same rang@,dbr this
temperature. At very larg8, we have an ergodic solution,

but as we lowes, we pass through a range pf between

min @nd st , Where the ergodic solution is unstable against ¢ 535
glassiness. In this region we must follow the glassy curve
instead of the ergodic one. We interpret this glassy solution
in the following way: The free energy landscape near the US

maximum becomes rough in this range of valuesBgf(at

this temperatune the same way the free-energy landscape
near the minimum corresponding to a thermodynamic phas&‘).

becomes rough in a glassy state. We call it a
state.”

The next panel is for a slightly lower temperatdbert still
aboveT,). Here, as we loweg, in the ergodic-native phase,
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FIG. 5. The final phase diagram. Same units as in Fig. 3. Panel
Stable phases. Region I: Random globule is the only stable

“glassy U%hase. Region II: Frozen globule is the only stable phase. Region

Ill: Ergodic-native and random-globule phases stable. Region IV:
Ergodic-native and frozen-globule phases stable. Regidiorily
visible in panel(b)]: Glassy native and random globule stable. Re-

we reach an AT instability before we get all the way down togion VI: Glassy native and frozen globule stable. The dashed line

the minimum on the ergodic curvéln Fig. 5, this would
correspond to moving on a line of constanimeeting the AT
line somewhere between poimsandB in panel(b) or (c).]

Furthermore, the only available glassy solution for st

is one with negative)B,/du, that is, it corresponds to the
kind of glassy US state discussed above. As this is not
stable phase, we conclude that for thjghe minimum value

marks the boundary of theunphysical ergodic-native state from
Fig. 3, to emphasize that the phase boundary of the glassy-native
state(solid) does not coincide with it. Panéb): Enlargement show-

ing structure in the region nedr= T~ T, and Bo=1.45(includ-

ing region \J. Below pointB the boundary of region Ill is given by

the AT line. Above pointB the boundary is the ergodic-native sta-
%ility limit [the uppermost line in pané&)]. The continuation of the

AT line is shown as a dotted lin@vhich turns into dash-dot=1

of '60 I_ies at this AT line, and beyond it there is no StableIine). Panel(c): The US states are ergodic in the vertically hatched
nativelike state. We can follow the glassy US state back up t@egion, glassy in the horizontally hatched region. The boundary
larger Bo, seeing that we eventually cross over to a normakpove and to the right of poir is an AT line. Beyond the region

(non-glassy transition state.

shown thex=1 line falls off monotonically, and foB,— it ap-

In the last panel, the temperature is lowered a bit morgroachesT,. Below pointA, the smallg, boundary coincides with
(below Tg). Again, starting in the ergodic native phase atthe line between regions Il and VI in pangt and (b).
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(@ F4 b)) FA native, glassy-native, random-globule, and frozen-globule
states come togethéor nearly s@. The third panel shows

the regions where ergodic and glassy US states are found.
There are six distinct regions in the phase diagram. In
region | (high T, small By), the only stable phase is the
¢

random globule. In region lismall 8, T<T,) it undergoes

a glass transition to the frozen-globule phase. The properties

of the system in this part of the phase diagram are the same

as in the completely random heteropolymer model of paper |;

© A ) the bias of the interactions toward a native state does not
F FA have any effect until atemperature-dependgnthreshold

Bs(T) is reached. This threshold is marked on the diagram
by the lines separating region | from regions Il and V and
region Il from region VI.
To help thinking about these phases, we offer the sche-
/\ matic free-energy-surface pictures of Fig. 6. They show how
\/ ¢ we imagine the free energy varies as a function of the native-

state overlap coordinate. Figure §a) depicts this cross-
section through the free-energy surface in region |, where
E there is a single smooth minimum arouger 0, representing

© *p ® F the random-globule phase. Figurébpshows what happens

in region Il, where this phase is replaced by the frozen-
globule phase. We represent this by drawing the free-energy

ey

Sy

surface with many local minima. Figurgd shows what
/VV\ happens in the middle of region Ill, where there are two
> > (smooth minima, the new one corresponding to the ergodic-

¢ ®  native phase(lt will lie above or below that atp=0 accord-
ing to whether we are above or below a first-order transition

that we expect to occur at a temperatlise<T,,, see below.
. ) In Fig. 6(d) we depict the situation in region 1V, where both
FIG. 6. Schematic free-energy surfa¢ree energyF is plotted the @~0 region and the region around the maximum become

vs overlap with native state) in different regions of the phase . . . .
diagram. Graph is schematic and no numerical value is associater&)UQh' Figure ) represents region V, with the native valley

with axes. In principleF could be thought of as in units & T and and the maximum rough, but the region nea0 still

@ in units of o. (a): Region 1, (b): region I, (c): region I, (d): smooth. In Fig. &) (region VI), that, too, becomes rough.

region 1V, (8): region V (f): region VI. See the text for explanation AN important feature is the fact that the random-globule

of all regions. and frozen-globule phases remaidynamically stable in
their respective temperature ranges for@yl Thus the hori-

large B, and lowering3,, we encounter an AT instability Zontal line separating region | from region Il continues
and a glassy solution appeat&quivalently, in Fig. 5 one across the diagram, separating region V from region VI and
moves on a horizontal line somewhere bef@yuntil meet- ~ region Il from region IV. _

ing the AT line for the first time.For smallerg,, we switch In each of regions Il IV, V, and VIFig. 6, panelsb), (d),

to the glassy curve, which has positi&ﬁolaﬁ describing a (e), (f)] there are two stable states. Thus, regions | and Ill are

glassy native phase. We can follow this curve down to itsseparated by the lin€q(B,), below or to the right of which,

minimum B, beyond which no phases correlated with then additi_on to th_e random-glob_ule state, an ergodic-native
native hasoé exist. But. of course. followind it back u to_state exists and is stable. In region IV, the frozen-globule and
ward Iart)rgeﬂo on tﬁe ur;stable brahch we gan identifypthethis ergodic-native states are both stab_le. In region V, the
glassy US state between the phase correlated with the nati&%?dom'glopwe state and a glassy-native state are stable,
state and the one uncorrelated with(&bove T, the latter while in region VI the stable states are the frozen-globule

) ) 9 and the glassy-native phases.
Sotgljergﬂgggw—globule phase; below it, it is the frozen- The diagram shows some interesting fine structure in the

neighborhood of the region where regions I, Ill, and V meet
(second panel, point A In particular, below point A, the
XI. FEATURES OF THE PHASE DIAGRAM boundary between regions Il and Vi.e., between the

The phase structure implied by this simple model is not s¢rdedic-native and glassy-native statés an AT line. It
simple. Figure 5 shows the phase diagram constructed frofi2Mes about as can be seen in the last panel of Fig. 4, where,
the above analysis. For clarity, we show in the top panel onlyollowing the ergodic phase down from higs, and u, we

the solutions that correspond to stable phases. The secomeachu . and thereafter have to switch to the glassy solu-
panel shows the details in the region where the ergodiction.
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On the other hand, the boundary(8,) above point B is rametersg included, have basins of attraction corresponding
reached as in the first panel of Fig. 4: One can come all th#éo the plots shown in Fig. 6. For example, starting frgm
way down to the minimum value g8, for the ergodic solu- somewhere close to 0 and given a free-energy profile like

tion before reachinguar. The full line continuing upwards ~ that in Fig. @c), dynamical equations will never cargy to
and to the right of poinB is an AT line, which goes over into the large value describing the native state. On the contgary,

an x=1 line at its maximum,T,.x. Below this line US will app_roach 0 as time goes on. . S .
solutions become glassy. But, if we relax this assumption and imagine finite barri-

Between pointsA and B, the boundary is marked by ers(associated wit_h local nucleation of.a native phEMa—
SR ) ] 46]), we may ask(informally) when activated motion over
reachingur in the way shown in the second panel of Fig. 4: the parrier to nucleation is least hindered. We argue that the
There is no stable ergodic-native solution to the left of thISfree_energy landscape features globally present in our mean-

line, since, upon lowerings, below Bg™ in panel(b), the  field picture will also be relevant locally: when our calcula-
solution withdB,/dm>0 is lost. Thus in this region the line tion here finds a glassy US state, we expect that free-energy
AB is an AT line for both the native phase and the US solu-surface near the true transition state will also be rough. Thus,
tions. The dashed line marks the boundary found if one igfrom the preceding description of the phases and the transi-
nores the AT ling(i.e., it is a portion of the boundary found tion states between them, we can see that folding should be
using the ergodic ansatz and shown in Fig. 3 easiest for large3, in a window betweenl(B,) and the
Everywhere below the AT lingboth portionAB and its  upper boundary of the region where the US states become
extension upward to the rights the region where the US glassy(and passage across the transition region is kinetically
solutions are glassy, as shown in the last panel of Fig. 5. Atmpeded by the tortuous nature of the local free-energy land-
a givenpg,, these features all have an onset at a temperaturgcapée. The latter boundary lies, in turn, just barely above
betweerT; and T a4 As can be seen in Fig. 1, this is a very Tq, where the landscape in thEarge) portion of the con-
small temperature range. This is also the reason why there figuration space uncorrelated with the native state also be-
fine structure, as shown in both the second and the thirgdomes rough, further impeding escape from it. At still lower
panels of Fig. 5, in such a small temperature range in théemperatures, things become even worse, first with the onset
phase diagrams. of glassiness in the nativelike region of configuration space
As remarked above, we have not done an equilibriumitself and finally with the disappearance of nativelike solu-
calculation, but we expect that the first-order transition tem+ions. But these features probably have minor consequences,
perature T,(B,) where the free energies of the random-since folding will already have been so strongly impeded by
globule and ergodic-native phases are equal will also riséhe effects(with onset neaiT) that tend to confine it in a
with B,. For largeg,, we expecfT,, like T,,, to be propor- region of configuration space uncorrelated with the native
tional to By (but T;<T,, of course. state.
Thus, at fairly largeB,, we expect the following sequence
of stable states as we lowarfrom a high value. Initially,
only the random-globule state is stable. Then, belgw the
ergodic-native state is also stable, and belbwit becomes We have introduced what we might call a generic model
the lowest free-energy state. Going further downTinwe  for a protein, based on what seems to us to be the simplest
cross the boundargfast panel in Fig. bwhere the US state way to incorporate a tendency to form a native state in an
between the ergodic-native and random-globule states betherwise random heteropolymer model. To make it possible
comes glassyi.e., acquires a rough local free energy land-to calculate typical properties, we follow previous authors
scape. Very soon thereafter, we cros$,, where the [2,24-2§ and do not specify a particular native state, but
random-globule state undergoes glassy freezing. Continuingather an ensemble of them, constrained only by chain-
we reach a temperature where the ergodic native-state undentropic constraints and confinement to the appropriate vol-
goes glassy freezing. Finally, we reach the stability limit ofume. This ensemble is characterized by the selection tem-
this glassy-native phase, leaving the system with nowhere tperatureT,. Our model differs from previous ones in that
go but the frozen-globule state. they are based on random-sequence heteropolymers, while
What lessons are there in these findings for protein foldwe start from a model[6,7] in which each monomer-
ing? We start from the assumption that the initial state in themonomer interaction is an independent random variable.
folding process is uncorrelated with the native sta, in While it might be argued that random-sequence models
Fig. 6 we start in a local minimum ap~0). Folding re- are more relevant to proteins, they approach the model we
quires the system to find its way to thergodig native state. consider here in the limit where the number of monomer
One feature that is evident is that such a path in configutypes becomes large. Thus, what we find out about our model
ration space always requires an uphill free-energy step. Thisiay be relevant to proteinsvith 20 different amino acids
is because either the random-globule or frozen-globulef course, it is also important to study what happens away
phases is always locally stable. from the large-monomer-type limit; our analysis here can
If we stick to our mean-field dynamical picture, where help in solving that more difficult problem.
barriers are infinite, folding is, strictly speaking, impossible.  Furthermore, naively, one might assume that by adjusting
In dynamical terms the “infinite” barriers translate into the N(N—1)/2 parameters one could imprint a native state more
fact that the equations that govern the motion of order pastrongly than for models with onlX parameters. Our model

XIl. DISCUSSION
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shows that this is not necessarily true. Parts of the phassompute equilibrium partition functions. A complete analysis
diagram are glassy, even for very low selection temperaturezould include such calculations, but we defer them to future
To, When the native state should be strongly imprinted intowork. Nevertheless, the purely dynamical analysis can reveal
the model. important properties of the system that cannot be seen in an
Instead of the quadratic confinement tepm(s,t)? one equilibrium analysis. For example, it has been known for a
could add three-body terms, which are commonly used to fixong time that for a large class of models, namely, those
the globule density. It would be interesting to extend theWhich have a glass transition whexe- 1, the dynamic and
analysis presented here to such models. Also, in our treafiatic glass transition temperatures are diffe{@®,42,43.
ment, translational invariance within the globule is put in by TNiS IS éxpected to be the case for the transitiolain our

hand. Keeping three-body terms would lead to automatiém’dek The equilibrium glass transition temperature is lower
' han the dynamical one. Thus, in a temperature range just

translational invariance. We have seen that if translz;\tiona{l)(:}IOW the dynamical ., the equilibrium analysis does not
g H

averaging is 0m|tte_<ﬂsee paper)lthen the equations become reveal the slow dynamicéaccompanied by aginghat we
coupled in thek variable and are thus a lot harder to solve. X .
Within our model. we have made iust tWo aobro .ma_are able to identify and analyze here.
ithin ou » W v Ju Pproxi In other glassy models for which it has been possible to

tions: the Gaussian variational ansatz of Sec. VI, and thtao a more complete analydi84,35,39,42,4B the static and
assumption of one-step ergodicity breaki@nalogous 10 4y namic transitions coincide when they occur as a result of

one-step replica symmetry breaking in the replica apprpach 4 Ameida-Thouless instabilitithe marginal stability con-
Otherwise the solution is complete and exact to the accuracyition, Eq. (80)] [50]. This is the case here at the phase
we were able to achieve numerically. ~ boundary where the nativelike state becomes glassy.

Our most important result is the existence of the various  Gillin and Sherrington[51] and Gillin, Nishimori, and
different phases at Iarg~B/T0, where the interactions that Sherrington[52] have been able to analyze both the statics
favor a native state are strong. While it is natural to antici-and the dynamics of several classes of mean-field spin-glass
pate that the nativelike configurations will be thermally dis-models with a competition between glassy and ferromagnetic

rupted above a temperature of ord@#/T,, it is not so ob-  Statessee also Ref53] for a special cageSome features of
vious that at low temperatures there will be otherthe phase diagram of our model that we have been able to

impediments to efficient folding. We identify two of these as discover so far are also seen in their models.
follows. Gillin et al. studied full(as well as one-st¢peplica sym-

(1) The frozen-globule state, which is uncorrelated withmetry breakingRSB) solutions, which we have not. In some
the native state, always exists beldy, no matter how big ~©f their models, the counterpart of our glassy native phase
B, is. This means that in a large part of configuration Spacegndergoes full RSB at low temperat_ures, a_nd the 'counterpart
the system may be trapped in a rough energy landscape affour [1-VI boundary becor_nes vertlc_al. It is possible in our
never[in mean-field theoryMFT)] get to the native-state Model as well that, in particular regions of the phase dia-
region where it can fold rapidly. Furthermore, in almost thegram, our one-step solutions are not stable and full RSB is
same temperature range, we expect that the energy landscdpeessary. More generally, it will be an interesting problem
is also rough around the transition region on the way to thd® try to explore what kinds and degr_ees of universality there
correctly folded state, further impeding the folding processare in the phase structures of various systems where the
Thus, while lower temperature favors well folded overglassiness induced by disorder competes with some kind of
random-globule-like configurations energetically, the rougrorder analogous to the native state in our problem or the
energy landscape of the glassy phase will hinder correct foldf€rromagnetic state in theirs.
ing. Our conclusion here is consistent with that of Goldstein
et al. [47], who found (albeit in a different kind of model ACKNOWLEDGMENTS
that a largeT,, /T (or T,/Tg) ratio favors folding.

(2) At even lower temperatures, the native state itself is
unstable against a glass transition where it splits into a larg&"
number of substates. Transitions between these substates are
blocked by high barriersinfinite, in MFT). A phase of this APPENDIX A: CORRELATION FUNCTION  G$3
kind was found earlier by Bryngelson and Wolynes in a phe-
nomenological mode|48]. It is tempting to associate the
substates with the glassy conformations observed at tempe
tures below 200 K in myoglobin Ref49]. - _

Of course, MFT is an approximation. The escape fromthe ~ G1o = (X(S,t1)Xo(s")) +(7(s,t1)Xo(s")) 61
tortuous part of the energy landscape to the smooth region — RO ,
will not take forever, nor will transitions between loWsub- + 01(7(S,11)Xo(S")) + 01 01(X(8,t1)Xo(S")).
states. Nevertheless, MFT does indicate when we can expect (A1)
relaxational dynamics, including folding, to be slow or fast,
as well as give us some insight into the physics behind thes®ne can show that the action of the dynamical generating
differences. functional F 4y, [see EQ.(23)] is invariant under the infini-

Our analysis here is a purely dynamical one. We do notesimal transformatioiBecchi-Rouet-Stora symmejry

It is a pleasure to thank Silvio Franz for discussions lead-
g to our formulation of this problem.

Here we derive Eq(30). Inserting Eq.(14) for the super-
rf‘,j'\(_ald into Eq.(25) gives
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o 9 . where
5D(s,t,0,0)= ea—gcb(s,t,&,ﬁ). (A2)
e—Fvar=f DWVe Sear (B3)
This follows in two steps. First one notices that for any func-
tion f, and
WY N — d N ~Svar
5J daf(q>(9))=ef 46 —f(®(6)=0, (A3) fD‘I’("')e >
a0 <("')>uar: (B4)
_ — f DWVe Svar
due to the identityfd 8(9/96)=0. This means that any term

involving a local function of® (i.e., not containing deriva-
tives overf and 6), e.g.,S,[ P,x,] [see Eq(16)], is invari-
ant under the transformatidid2). Sy[x,] is trivially invari- e F=e (5~ Sa)varg=Foar (B5)
ant since it does not contain the superfidid (The same
reasoning holds for a transformation such as@@) with a  to conclude that
derivative with respect t@ instead of with respect t6.) The

. . : . F<(S— +F,ar- B6
only term left isS,[®] (i.e., the part of the action quadratic (S=SsardvartFoar (B6)
in the superfield and it is straightforward to see that this Thys, in a static calculation, the variationally obtaingd
term Is aISO invariant Under E@A\Z) (though not Under the gives an upper bound on the trEeWhat is a”owed to Vary

transformation involving the derivative with respectap is the form ofS, ,,, most often, the parameters describing it.
The fact that the action is invariant under E&2) im- (In the GVA, S, is specified byGSS andGSS .

plies the Ward identity In the dynamical problem we follow another route, start-
ing exactly at the problematic step, E&5), along the lines

In a static calculation one would proceed with the inequality

iGsS’zo (A4)  of Ref.[54]. Instead of the inequalityB6) we use Eq(B2)
— 12 ' . . s
a6, in a slightly modified form
~ — —AS
which gives G=(7xo)+ 6:(xx,) (we have suppressed the Fayn=Far—In(e”*%),ar, (B7)

arguments of the fields to simplify the notatjofhis implies

that separately one has whereAS=S-S,,,. Applying a cumulant expansion

(exp( - AS)>uar: ex;{ _<As>uar+ %(<A82>uar

(m%0)=0, (xxo)=0. (A5)
Inserting Eq.(A5) into Eq.(Al) gives the desired result, Eq. —(AS)iar)Jr cee, (B8)
(30).
one gets
APPENDIX B: DETAILS ON THE GVA AND HOW TO
IMPROVE IT
den= Fvar+<s_ Svar>var+AF1 (B9)

Here we give more background on the use of B§). In
the dynamical calculation, the fields are complex and contaifvhere AF contains second- and higher-order corrections in
Grassmann variables; thusyy,, is not a real number. This AS, In any approximation made by keeping a finite number
means that any interpretation of E(R6) as an extremum of terms in Eq(B8) (the simplest being to sétF =0), Fayn

co_ndition forF g4y, has to be given up. Neve_rtheless,_we CaNgenends orﬁig. To minimize this dependence, we chose
still make some sense of the GVA as the first step in a sys- .

tematic approximation scheme. 1> So that the derivative of the approximate form Fy,
Formally, one starts from Ed23), which we rewrite in  with respect toG33 vanishes. This gives E¢36). Further-
the shorter form more, if all terms inAF are kept, this procedure, by con-

struction, formally gives back the exagt;,,.
The meaning of minimizing the dependence with respect

e_den:f DWwe SIYI (B1)  to quantities involving Grassmann numbers may seem ob-

scure, but we note that we are using the SUSY representation
only for compactness. The entire GVA calculation could have
been presented equivalently without any Grassmann vari-
ables, with no change in meaning or result. Thus, we are
really only minimizing the dependence on parameters of
e Fayn=(e" (5 Sar)y _ e~ Foar, (B2)  physically well-defined correlation and response functions.

whereW stands for the pairxp,®) and, likewise, DV for
DxoD®. One can express,y, in a slightly different form
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