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Embedding a native state into a random heteropolymer model: The dynamic approach

Z. Konkoli1,2 and J. Hertz2
1Department of Applied Physics, Chalmers University of Technology and Go¨teborg University, SE 412 96 Go¨teborg, Sweden

2NORDITA, Blegdamsvej 17, DK 2100 København, Denmark
~Received 11 July 2002; published 19 May 2003!

We study a random heteropolymer model with Langevin dynamics, in the supersymmetric formulation.
Employing a procedure similar to one that has been used in static calculations, we construct an ensemble in
which the affinity of the system for a native state is controlled by a ‘‘selection temperature’’T0. In the limit of
high T0, the model reduces to a random heteropolymer, while forT0→0 the system is forced into the native
state. Within the Gaussian variational approach that we employed previously for the random heteropolymer, we
explore the phases of the system for high and lowT0. For high T0, the system exhibits a~dynamical!
spin-glass phase, like that found for the random heteropolymer, below a temperatureTg . For low T0, we find
an ordered phase, characterized by a nonzero overlap with the native state, below a temperatureTn}1/T0

.Tg . However, the random-globule phase remains locally stable belowTn , down to the dynamical glass
transition atTg . Thus, in this model, folding is rapid for temperatures betweenTg andTn , but belowTg the
system can get trapped in conformations uncorrelated with the native state. At a lower temperature, the ordered
phase can also undergo a dynamical glass transition, splitting into substates separated by large barriers.

DOI: 10.1103/PhysRevE.67.051915 PACS number~s!: 87.14.Ee, 05.70.Ln
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I. INTRODUCTION

The protein folding process is relevant for all aspects
life: once read off from the RNA chain, proteins perform
variety of functions, from mechanical work to attacking v
ruses@1#. The key factor that determines the function of
protein molecule is its 3D structure, which, in turn, is det
mined by the sequence of amino acids forming the pro
chain @2–5#. Furthermore, a protein that has been denatu
~by stretching it for example! finds its native state relatively
quickly. Protein folding has attracted an enormous amoun
scientific attention, but still there is no generic understand
of this process. Nevertheless, one thing is clear: a pro
generally has a potential energy surface which results
stable free energy minimum, corresponding to the na
state@3#.

Random heteropolymer models~RHP! have been used ex
tensively as candidate systems, which might help us un
stand the generic features of the potential energy surface
proteins and their connection with thermodynamic@6–13#
and dynamical@14–20# properties. The RHP model is cha
acterized by quenched random monomer-monomer inte
tions, meant to mimic the variety of interactions betwe
amino acids in random sequences. It turns out that the po
tial energy surface of the RHP is quite similar to that o
particular class of spin glasses@21#: Its complex form, with
exponentially large numbers of local minima and sad
points, constrains the motion of the system drastically, an
cannot explore its full configuration space and reach Gi
equilibrium. In a previous paper~ @22#, henceforth referred to
as paper I!, we demonstrated, in mean-field theory, the ex
tence of a sharp transition to a ‘‘dynamical glassy state’
which the equilibration time diverges and the dynamics
hibit aging. ~The potential importance of spin-glass phys
to proteins was first discussed in Ref.@23#.! Obviously, the
random heteropolymer model does not describe a pro
with a native state, but it alerts us to the need to exam
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possible glassiness in models for protein dynamics.
Why are real proteins not glassy? Evidently, nature h

tuned amino acid sequences to avoid glassy behavior
understand how such tuning might be done, it is worthwh
to study models that contain competition between glassin
and a tendency to form a native state, by choosing inte
tions that are not completely random. Several studies al
the lines of this suggestion have been made instatics~using
the replica treatment, see, e.g., Ref.@23#!. The tendency to-
wards a particular state can be built in by choosing sequen
from a distribution correlated with the native sequen
@2,24–26#. A dynamical treatment of similar models i
highly desirable, not only to help gain insight into resu
obtained in replica approaches, but also because knowle
of the correct thermodynamics alone may not be sufficien
is known that in related~mean-field! models static and dy-
namic phase diagrams can be different. Thus~at least on
sufficiently short-time scales! only a dynamical approach ca
describe the measurable properties of the system. In this
per we undertake such a study.

We extend the RHP model studied in Refs.@6,7# to in-
clude the existence of a native state: the original rand
monomer-monomer interactions are biased so as to favo
native state conformation. The problem is formulated a
Langevin model. To the best of our knowledge, there is so
neither a static nor a dynamic treatment available for a mo
of this sort: Static studies have been based on random m
mer sequences, i.e., using onlyN random parameters, se
Refs.@2,24–26#, rather thanN(N21)/2 in the RHP model.

Admittedly, the model does not describe a realistic prot
~e.g., it does not give rise to secondary structure such aa
helices orb sheets!. However, it does contain important ge
neric features: the polymeric structure and the mixture
attractive and repulsive interactions. Together, these feat
lead to frustration in the structural dynamics. In our vie
ours is the simplest such model that includes competit
between glassy and native states. As we will see, it teac
©2003 The American Physical Society15-1
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us that one cannot get rid of glassiness so easily.
As in paper I, we simplify the model further by omittin

three-body interactions in the polymer.~A review describing
how to include three-body terms is given in Ref.@9#.! The
price we have to pay for this simplification is that we have
introduce a somewhat arbitrary confining potential, wh
we take to have a quadratic form. We adjust its strength
that the radius of gyrationRg of a polymer of sizeN scales
like N21/d, whered is the dimensionality of the system. I
this way we attempt to describe a globular state. Of cou
we cannot describe theu-point transition in such a mode
but here we are only interested in transitions between dif
ent globular states.

Our formal starting point is the Martin-Siggia-Rose ge
erating functional for the Langevin dynamics of the mod
@27–30#, written, for convenience and compactness, in
supersymmetric form@31#. To derive equations of motion fo
correlation and response functions we use a variational
satz with a quadratic action. This approach has been use
study the problem of a manifold in a random potential,
both statics@32,33# and dynamics@34,35#.

In paper I we showed that the RHP model exhibited b
ken ergodicity ~formally, a spontaneous supersymme
breaking! in a low-temperature dynamical glassy phase.
the present study, with interactions biased in favor of a na
state to a controlled degree, we find, in addition, a we
folded phase, if the bias is strong enough. It can coexist w
either the disordered~random-globule! state or the frozen-
globule glass phase, depending on the temperature. Fur
more, we find that at low temperature the native phase
itself undergo a dynamical freezing into a different glas
phase. In this phase the conformation of the protein is alw
highly correlated with the native state, but cooperative
netic constraints still lead to a divergent equilibration tim
as for the frozen-globule state.

II. THE MODEL

The model is defined as follows. The Langevin dynam
is assumed to be governed by a HamiltonianH@x#,

]x~s,t !/]t52dH@x#/dx~s,t !1h~s,t !. ~1!

Here x(s,t) is the position of monomers at time t. The
monomers are numbered continuously froms50 to s5N.
h(s,t) is the Gaussian noise

^h~s,t !h~s8,t8!&T52Td~s2s8!d~ t2t8!, ~2!

resulting from coupling to a heat bath at temperatureT.
The Hamiltonian H@x# contains a deterministic par

H0@x,m# and a random partH@x,$B%#. H0@x,m# is defined
as

H0@x,m#5
T

2E0

N

ds$@]x~s,t !/]s#21mx~s,t !2%. ~3!

It describes the elastic properties of the chain and a confi
ment potential, which fixes the density of the protein. T
radius of gyrationRg;m21/4, so, in order that the protein i
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compact, i.e.,Rg;N1/d, we requirem;N24/d. Thus, since
we are interested in very long proteins~to obtain the thermo-
dynamic limit! we need to solve the model form close to
zero.

The random partH@x,$B%# describes the quenched ra
dom interactions between monomers,

H@x,$B%#5
1

2E0

N

dsds8Bss8V„x~s,t !2x~s8,t !…. ~4!

We takeBss8 Gaussian, with varianceB2. The quenched av-
erage overBss8 is performed as

^~• !&B5*)s.s8dBss8~• !P~$B%!.

V(Dx) is a short-range potential, and, for simplicity, we ta
it to have a Gaussian form, as in Ref.@16#,

V~Dx!5S 1

2ps D d/2

e2(Dx)2/2s. ~5!

d is the dimensionality of the system andAs the range of the
potential. Large~small! s corresponds to a long~short! range
potential. In particular, fors→0, V(Dx)→d(Dx), and we
recover the potential used in Refs.@6,7,18#. Here, and in the
following, Dx refers to a monomer-monomer distance:Dx
5x(s,t)2x(s8,t) for a pair of monomerss, s8.

We use reasoning similar to that employed in statics
define P($B%) ~see Refs.@2,24–26#!, adapting it to the
random-bond model:

P~$B%!}expH 2
1

T0
H@x0 ,B#2

1

2E dsds8Bss8
2 /2B2J ,

~6!

where T0 is called the selection temperature andx0(s) is
some arbitrary native state conformation. Thus the symm
ric bond distribution of the RHP model is distorted so as
give bigger weight toBss8’s, which are attractive betwee
monomers that lie close to each other in the configurat
x0(s). Explicitly, the properly normalizedP($B%) is given
by

P~$B%!5~2pB2!2N(N21)/4expF2b0
2B2/4E dsds8V„x0~s!

2x0~s8!…22b0/2E dsds8Bss8V„x0~s!2x0~s8!…

21/2E dsds8Bss8
2 /2B2G , ~7!

from which we see that the distribution ofBss8 is peaked
aroundBss8

max
52b0B2V„x0(s)2x0(s8)…. Thus, if monomers

s and s8 are close in the native state@V„x0(s)2x0(s8)…
Þ0#, their coupling constantBss8 is pulled down, as in a Go
model @36,37#. For T0→` we recover the RHP model. Fo
T0→0, P($B%) picks a specific set ofBss8 . For this set, by
5-2



he

ac
on

ag
ll

it,
-

a

o
d

v-
r

r

of
tly

dis-

d

n

tic

-

e

ve
-
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construction,x0(s) is the deepest minimum ofH@x,$B%#
given in Eq. ~4!. This is the mechanism that embeds t
native statex0(s).

This mechanism is somewhat arbitrary. However, the f
that the strength of embedding of the native state is c
trolled by the single parameterT0 facilitates the study of
transitions between random and nativelike states~and, as we
will show, of possible coexistence of such phases!.

So far, the configurationx0(s) is arbitrary. Thusx0(s) has
to be considered a quenched random function, to be aver
over just likeBss8 in order to obtain generic results. We wi
carry this average out later.

All our results are obtained in the thermodynamic lim
where the lengthN of the heteropolymer chain goes to infin
ity. Also, for simplicity, we join the polymer ends to form
ring. This neglect of end effects is valid for a long chain.

III. MAPPING TO THE FIELD THEORY

To solve the model we map the Langevin dynamics ont
supersymmetric~SUSY! field theory. Using the standar
Martin-Siggia-Rose~MRS! formalism @27–30# and SUSY
notation@19,20,31,38#, the dynamical average of any obser
able, for fixed$B%, can be calculated as~see, e.g., paper I fo
details!

^O@F#&T5E DFO@F#e2S[F] , ~8!

S@F#5S1@F#1S@F,x0 ,$B%#, ~9!

where

S1@F#51/2E dsd1ds8d2F~s,1!K12
ss8F~s82!, ~10!

S@F,x0 ,$B%#51/2E d1dsds8Bs,s8V„F~s,1!2F~s8,1!…,

~11!

and

K12
ss8[d12dss8K1

s , K1
s5T@m2~]/]s!2#2D1

(2) , ~12!

D1
(2)52T

]2

]u1]ū1

12u1

]2

]u1]t1
2

]

]t1
. ~13!

The F(s,1) denotes a superfield,

F~s,1!5x~s,t1!1 ū1h~s,t1!1h̄~s,t1!u11 ū1u1x̃~s,t1!,
~14!

containing the physical coordinatex(s,t), the MSR auxiliary
field x̃(s,t), ghost fieldsh(s,t) and h̄(s,t) that enforce the
normalization of the distribution, and the Grassmann va
ablesu and ū. We use the notation 1[(u1 ,ū1 ,t1), likewise
*d1[*dū1du1dt1.
05191
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Of course, the solution can be obtained without the aid
the supersymmetric formalism, but we find it convenien
compact.

As noticed by De Dominicis@28# the expression in Eq.~8!
is already normalized, so the average over the quenched
orderBs,s8 can be done directly on Eq.~8!:

^̂ O@F#&T&B5E DFO@F#e2(S1[F] 1S2[F,x0]) , ~15!

where exp(2S2@F,x0#)[^exp(2S@F,x0,$B%#)&B , and

S2@F,x0#52
B2

4 E dsds8F E d1V„F~s,1!2F~s8,1!…G2

2
b0B2

2 E dsds8d1V„F~s,1!

2F~s8,1!…V„x0~s!2x0~s8!…. ~16!

Thus, the native statex0(s) enters the action in the secon
term of Eq. ~16!. Note that there is no termb0

2V„x0(s)
2x0(s8)…2, since it gets cancelled by a similar normalizatio
factor forP($B%) in Eq. ~7!. It is useful to rewrite Eq.~16! as

S252
B2

4 E ddx,ddy d1 d2 A12
(V)~x,y!A12

(d)~x,y!

2
b0B2

2 E ddx ddy d1 A10
(V)~x,y!A10

(d)~x,y!, ~17!

with the notation A12
( f )(x,y)5*ds f„F(s,1)2x…f „F(s,2)

2y…, A10
( f )(x,y)5*ds f„F(s,1)2x…f „x0(s)2y…; f P$V,d%.

In the long-chain limit, as discussed in paper I~and refer-
ences therein!, one obtains a self-consistent field theore
formulation, withS2 simplified to

S2@F,x0#5
B2

4 E ddxddyd1d2@^A12
(V)~x,y!&^A12

(d)~x,y!&

2A12
(V)~x,y!^A12

(d)~x,y!&

2^A12
(V)~x,y!&A12

(d)~x,y!#

1
b0B2

2 E ddxddyd1@^A10
(V)~x,y!&^A10

(d)~x,y!&

2A10
(V)~x,y!^A10

(d)~x,y!&

2^A10
(V)~x,y!&A10

(d)~x,y!#. ~18!

All averages of the typêA(V,d)& have to be calculated self
consistently withS@F#5S1@F#1S2@F#. ~We have abbrevi-
ated the double average^^•&T&B simply by ^•&.! In the limit
N→` Eqs.~15! and~18! provide an exact description of th
dynamics for an arbitrary native statex0(s).

IV. AVERAGE OVER NATIVE STATE CONFORMATIONS

It is impossible to solve the model for a general nati
state configurationx0(s). We therefore consider a distribu
5-3
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Z. KONKOLI AND J. HERTZ PHYSICAL REVIEW E67, 051915 ~2003!
tion of native states and perform the average

^O@F,x0#&5E Dx0^O@F,x0#&e2S0[x0] , ~19!

whereS0@x0# weights each native-state conformation in t
ensemble as

S0@x0#5
1

2E dsx0~s!K00
ss8x0~s8!, ~20!

with

K00
ss8[dss8~m02]2/]s82!. ~21!

The parameterm0 fixes a size of the globule in this en
semble,

^x0~s!2&5
1

2Am0

. ~22!

Since the polymer ends are joined, there is translationa
variance along the coordinates, and ^x0(s)2& does not de-
pend ons. Thus, with this procedure, the dynamical gener
ing functional for the problem is calculated as

e2Fdyn5E Dx0DFe2(S0[x0] 1S1[F] 1S2[F,x0]) . ~23!

There is some formal similarity between the dynamical fu
tional Fdyn and the static replica partition function. The in
tegration overDx0 enters in the same way as the extra re
lica in the static formalism.

V. CORRELATION FUNCTIONS

The SUSY correlation functions

G12
ss8[^F~s,1!F~s8,2!&, ~24!

G10
ss8[^F~s,1!x0~s8!&, ~25!

G00
ss8[^x0~s!x0~s8!& ~26!

contain all the information we are interested in.

G12
ss8 encodes 16 correlation functions, out of which on

two, correlation and response function, are independent
nonzero:

G12
ss85C~s,t1 ;s8,t2!1~ ū22 ū1!@u2R~s,t1 ;s8,t2!

2u1R~s8,t2 ;s,t1!#, ~27!

with

C~s,t;s8,t8![^x~s,t !x~s8,t8!&, ~28!

R~s,t;s8,t8![^x~s,t !x̃~s8,t8!&5
d^x~s,t !&

dh~s8,t8!
. ~29!
05191
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The fieldh(s8,t8) entering the description of response fun
tion is an arbitrary external field that couples tox(s8,t8).
The fact that only two correlation functions survive is relat
to Ward identities originating from SUSY invariance of th
original actionS.

The supersymmetry of the theory is associated with eq
librium. One of the Ward identities resulting from SUSY
the fluctuation-dissipation theorem~FDT!, which relates cor-
relation and response functions. In the present case,
glassy state manifests itself as a spontaneous breakin
supersymmetry, leading to a modified FDT, as in previo
treatments of other models@31,34#.

G10
ss8 describes the overlap with the native state. Due

the Ward identities, only a single correlation function su
vives ~see Appendix A for details!:

G10
ss85^x~s,t !x0~s8!&[f~s,t1 ;s8!. ~30!

Similarly, the native state ensemble is described by

G00
ss85^x0~s!x0~s8!&[G~s;s8!. ~31!

G12
ss8 alone is sufficient to describe the RHP model. Here

need the two extra functionsG10
ss8 andG00

ss8 .
Also, in what follows, we exploit the translational invar

ance along thes coordinate and define Fourier transforms
all correlation functions:

X~s,s8!5E dk

2p
eik(s2s8)Xk ,

whereX5C,R,f,G.

VI. EQUATIONS OF MOTION

To solve the model we proceed by making a Gauss
variational ansatz~GVA!, assuming that the fieldsF are de-
scribed by the approximate action

Svar5
1

2E d1dsd2ds8F~s,1!~G21!12
ss8F~s8,2!

1E d1dsds8F~s,1!~G21!10
ss8x0~s8!

1
1

2E dsds8x0~s!~G21!00
ss8x0~s8!. ~32!

Technically, this implies the following approximation fo
Fdyn :

Fdyn'^S&var1Fvar , ~33!

where

e2Fvar[E Dx0DFe2Svar5e(d/2)Tr ln G, ~34!

^•&var5eFvarE Dx0DF~• !e2Svar. ~35!
5-4
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The stationarity condition

dFdyn

dG12
ss8

50 ~36!

translates into the equation of motion for Green’s funct

G12
ss8 @see Eqs.~43!–~46!#. We have derived identical equa

tions of motion by using the approach of Ref.@35#, where
standard field theoretic identities~e.g., ^FdS/dF&50) are
used. It can be shown that for quadraticSvar the two proce-
dures give the same result. We omit this analysis here to s
space.

In a corresponding equilibrium problem, the stationar
condition is also an extremum condition and provides
bound on the free energy. Here, sinceFdyn contains integra-
tions over complex fields and Grassmann variables, the G
does not give a bound onFdyn . Nevertheless, it is the firs
step in a systematic approximation procedure, as outline
Appendix B.

The GVA has been applied to the problem of a manifo
in a random potential, in both statics@32,33# and dynamics
@34,35#. The method is exact when the dimensionality of t
manifold is infinite but is only approximate for finite dimen
sionality. Nevertheless, even for rather low dimensionality
has been shown to be a very good approximation in
random-manifold problem, where it has been checked
merically @35#. We have shown in paper I that the prese
model is closely related to the random-manifold proble
Thus, we hope that the GVA will also be reasonable he
although we have not strictly checked its validity.

Using Eqs.~33!, ~32!, and~9! gives the following expres-
sion for Fdyn :

Fdyn5
d

2E dsds8K00
ss8G00

ss81
d

2E dsds8d1d2K12
ss8G12

ss8

2
d

2
Tr ln G2

B2

4 E ddxddyd1d2^A12
(V)~x,y!&

3^A12
(d)~x,y!&2

b0B2

2 E ddxddyd1d2^A10
(V)~x,y!&

3^A10
(d)~x,y!&, ~37!

where all averages are to be calculated usingSvar @see Eq.
~32!#. Performing averages, the fourth and fifth term on
right-hand side of Eq.~37! become

Fdyn
(4) 52

d

2NE d1d2dsds8V @~B12
s 1B12

s8!/2#, ~38!

Fdyn
(5) 52

b0d

N E d1d2dsds8V @~B10
s 1B10

s8!/2#, ~39!

where

B12
s 5^@F~s,1!2F~s,2!#2&5G11

ss1G22
ss22G12

ss , ~40!

B10
s 5^@F~s,1!2x0~s!#2&5G11

ss1G00
ss22G10

ss , ~41!
05191
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V~z!52
B̃2

d
~z1s!2d/2, B̃25

B2

2

N

v
~4p!2d/2. ~42!

Performing the variational ansatz@i.e., evaluating Eq.
~36!# results in the following equations of motion:

@T~m1k2!2D1
(2)#G12

k 5d1212E d3V8~B13!~G32
k 2G12

k !

12b0V8~B10!~G02
k 2G12

k !, ~43!

@T~m1k2!2D1
(2)#G10

k 52E d2V8~B12!~G20
k 2G10

k !

12b0V8~B10!~G00
k 2G10

k !,

~44!

~m01k2!G01
k 52b0E d2V8~B20!~G21

k 2G01
k !, ~45!

~m01k2!G00
k 5112b0E d1V8~B10!~G10

k 2G00
k !, ~46!

and after disentangling the SUSY notation one gets~see pa-
per I for related details!

@T~m1k2!1]/]t#Ck~ t,t8!

52TRk~ t8,t !12E
0

t

dt9V8@B~ t,t9!#Rk~ t8,t9!

14E
0

t

dt9V 9@B~ t,t9!#r ~ t,t9!@Ck~ t,t8!2Ck~ t9,t8!#

22b0V8@A~ t !#@Ck~ t,t8!2fk~ t8!#, ~47!

@T~m1k2!1]/]t#Rk~ t,t8!

5d~ t2t8!14E
0

t

dt9V 9@B~ t,t9!#r ~ t,t9!

3@Rk~ t,t8!2Rk~ t9,t8!#22b0V8@A~ t !#Rk~ t,t8!,

~48!

@T~m1k2!1]/]t#fk~ t !

54E
0

t

dt9V 9@B~ t,t9!#r ~ t,t9!@fk~ t !2fk~ t9!#

12b0V8@A~ t !#@Gk2fk~ t !#, ~49!

~m01k2!fk~ t !52b0E
0

t

dt9V8@A~ t9!#Rk~ t,t9!, ~50!

~m01k2!Gk51, ~51!

whereB(t,t8) andA(t) are defined as
5-5
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B~ t,t8!5^„x~s,t !2x~s,t8!…2&

5C~s,t;s,t !1C~s,t8;s,t8!22C~s,t;s,t8!

and

A~ t !5^@x~s,t !2x0~s!#2&

5C~s,t;s,t !22f~s,t;s!1G~s,s!.

Note that due to translational invariance with respect ts
both B(t,t8) and A(t) are s independent. The equations o
motion for Ck(t,t8) and Rk(t,t8) are almost identical to
those for the pure RHP model. Coupling to the native st
enters through the terms proportional tob0. Again, for large
selection temperatureb0→0 and one recovers the RH
model.

VII. EXTRACTING ORDER PARAMETERS

The equations of motion are coupled integrodifferen
equations with initial conditions given byCk(0,0), f(0),
and ~we use Ito’s convention! R(t1e,t)→1 as e→0. To
solve the equations analytically we have to consider sev
assumptions~which can be checked by numerical solution!.

First, we make the~rather strong! standard assumption
from aging theory for spin glasses about the asymptotic
havior of the solutions: In the regime of time translation
invariance~TTI!,

lim
t→`

Ck~ t1t,t !5Ck~t!, ~52!

lim
t→`

Rk~ t1t,t !5Rk~t!, ~53!

and, in the aging regime,

lim
t→`

Ck~ t,lt !5qkĈk~l!, ~54!

lim
t→`

Rk~ t,lt !5
1

t
R̂k~l!. ~55!

The validity of these assumptions could be checked num
cally. Since this has been done for equations of similar t
elsewhere@35#, we omit it in the present analysis.

Second, it is well known that asymptotic solutions of su
equations can be characterized by a few order parame
@34,35,39–41#. They are defined as

q̃k5 lim
t→`

Ck~ t,t !, ~56!

qk5 lim
t→`

Ck~t!, ~57!

q0,k5 lim
l→0

qkĈk~l!, ~58!

wk5 lim
t→`

fk~ t !. ~59!
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The following k-integrated quantities will also be useful:

q̃[E dk

2p
q̃k5 lim

t→`
^x~s,t !x~s,t !&, ~60!

q[E dk

2p
qk5 lim

t→`

lim
t→`

^x~s,t !x~s,t1t!&, ~61!

q0[E dk

2p
q0,k5 lim

l→0
lim
t→`

^x~s,t !x~s,lt !&, ~62!

w[E dk

2p
wk5 lim

t→`
^x~s,t !x0~s!&. ~63!

q̃ measures the size of the globule,q measures the persisten
correlation in the TTI regime,q0 is the asymptotic correla
tion in the aging regime, andw the overlap with native state
Also, it is useful to define

b52~ q̃2q!, b052~ q̃2q0!, ~64!

a[ lim
t→`

^@x~s,t !2x0~s!#2&5q̃22w1
1

2Am0

. ~65!

Third, we assume that the generalized fluctuation diss
tion theorem is valid in the form

R̂k~l!5
x

T
qk

dĈk~l!

dl
, ~66!

wherex could in principle depend onk and Ck . However,
related models have been studied in detail and they exh
one-step replica symmetry breaking with ak-independentx.
This one-step replica symmetry breaking ansatz in our
namical study translates exactly to Eq.~66!.

VIII. RELATING ORDER PARAMETERS

For t5t8 and t→` Eq. ~47! gives

T~m1k2!q̃k5T1
2

T
V8~b!~12x!~ q̃k2qk!1

2

T
V8~b0!

3x~ q̃k2q0,k!22b0V8~a!~ q̃k2fk!. ~67!

With t5t81t and t8→` and thent→` Eq. ~47! becomes

T~m1k2!qk5
2

T
@V8~b!2xV8~b0!#~ q̃k2qk!1

2

T
V8~b0!

3x~ q̃k2q0,k!22b0V8~a!~qk2fk!. ~68!

Equation~47! in the aging regimet85lt, first for t→` and
thenl→0, gives
5-6
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T~m1k2!q0,k5
2

T
V8~b0!~12x!~ q̃k2qk!1

2

T
V8~b0!

3x~ q̃k2q0,k!22b0V8~a!~q0,k2fk!.

~69!

Equations~49! and ~50! result in two equations forwk :

T~m1k2!wk5
2

T0
V8~a!~Gk2wk!, ~70!

~m01k2!wk5
2

TT0
V8~a!x~qk2qo,k!1

2

TT0
V8~a!~ q̃k2qk!.

~71!

They are equivalent; one can choose to solve for the o
parameters working with either Eq.~70! or ~71!. This seems
a rather remarkable coincidence. We believe that it origina
from the SUSY invariance of the original actionS. For ex-
ample, a similar comment holds for Eqs.~47! and~48!; they
are equivalent in the TTI regime and one can derive o
from the other. The ‘‘conspiracy’’ of Eqs.~49! and ~50! not
contradicting each other is very likely a similar phenomen
Equation~48! for l51 reduces to

R̂k~1!~m̃1k21S!52~ q̃k2qk!
4V 9~b!

T2
r̂ ~1!, ~72!

where

r̂ ~l![E dk

2p
R̂k~l! ~73!

andS is defined by

S5x
2

T2
@V8~b!2V8~b0!#. ~74!

Solving these equations for the order parameters give

b5
1

Am̃1S
, ~75!

b05
1

x

1

Am̃
1

x21

x

1

Am̃1S
, ~76!

q̃5
b0

2
1

V8~b0!

4T2m̃3/2
1

1

4Am0 S 12
m

m̃

12
m0

m̃

D 2

3S 21Am0

m̃
D S 12Am0

m̃
D 2

, ~77!
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a5
b0

2
1

V8~b0!

4T2m̃3/2
1

1

4Am0

1

S 11Am0

m̃
D 2

3FAm0

m̃
S 112Am0

m̃
D 12

m

m̃
Am0

m̃
1S m

m̃
D 2

3S 21Am0

m̃
D G , ~78!

m̃5m1
2

TT0
V8~a!, ~79!

and the combination of Eqs.~72! and ~75! gives

05 r̂ ~1!@T21b3V 9~b!#. ~80!

Furthermore, the overlapw with the native state is given by

w5
1

2Am0

12
m

m̃

11Am0

m̃

. ~81!

All overlap order parameters are positive. However, this
sult is not obvious and has to be obtained after some alge

These equations have two kinds of solutions. In one ki
b5b0, so there is no glassiness~aging!. For this kind of
solution, the parameterx is irrelevant. We call such solution
‘‘ergodic.’’ ~While it will turn out that some of them are no
truly ergodic, in the sense of describing states where
entire configuration space is visited with Boltzmann pro
abilities, they violate ergodicity in a rather trivial way, like
ferromagnet below the Curie temperature. We could c
them ‘‘non-glassy,’’ but we prefer not to use a negative term!

For an ergodic solution, withb5b0 , S50. Furthermore,
r̂ (l)50, so Eq.~80! is trivially satisfied. One then has t
solve the four equations~75! and ~77!–~79! for b, q̃, a, and
m̃.

The stability of such a phase against glassiness can
determined using the analysis we presented in paper I~see
Fig. 1!. There, we studied a model with no native-state b
in its interactions (T05`) for finite m. The boundary of the
glassy state as a function ofm has a form qualitatively like
that in thep-spin glass as a function of field@42,43#. In the
present model, the presence of the native state enters
calculation solely through the replacement ofm by m̃. There-
fore, if a particularT and m̃ fall in the glassy regime~the
region below the full and dashed lines! in Fig. 1, the ergodic
ansatz has to be given up.
5-7
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The instability can occur in two ways, according
whetherm̃ is bigger or smaller than the critical valuem̃c .
Above m̃c , the line separating glassy from ergodic regions
an Almeida-Thouless~AT! line; below it the stability condi-
tion

T21b3V 9~b!.0, ~82!

is violated. Form̃,m̃c , there is no AT instability. The tran
sition is like that for the completely random heteropolym
To find such a transition, we have to solve for a glassy ph
characterized in part by a value of the FDT-violation para
eter x,1 and then find where in the parameter spacex
→1. In the region where thex,1 solution exists, the asso
ciated ergodic phase is unstable and is replaced by the g
one.

In a glassy phase, aging is present:r̂ (1)Þ0, so the quan-
tity in brackets in Eq.~80! has to vanish, i.e., the AT cond
tion has to be satisfied as an equality, rather than an ineq
ity. This so-called marginal stability condition determinesb
as a function of temperature. In this case we have three m
unknowns,S, b0, andx, making a total of seven, and seve
equations~74!–~80!, to solve for them.

We look for ergodic solutions first in the following sec
tion, and we examine their stability. Then, in the followin

FIG. 1. Boundary of the glassy phase in the (m̃,T) plane.m̃ is in
units ofmc , andT in units ofTmax. The boundary is same as in th
case of the random-heteropolymer model from paper I, except

native-state correlations lead to the replacement ofm by m̃. We
have used parametersd53 ands51. Tmax is the maximumT for
which Eq.~80! has a solution~see paper I for further details!. mc is

the value ofm̃ whereT(m̃) attains this maximum. The solid part o
the boundary is an AT line, and the dash-dotted part marks a t
sition wherex→1. Approaching the AT line from below,b2b0

→0, while x remains strictly less than 1. Approaching thex51
line from below, x→1 smoothly, whileb2b0 is discontinuous
there. Above both lines,b5b0 and x is undetermined@any xÞ0
solves Eqs.~74!–~80!, and no physical quantity depends on it#. The
same holds for all figures where these lines appear.
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section, we study glassy solutions~within the one-step aging
ansatz of Sec. VII! and identify the regions in the paramet
space where they hold.

IX. ERGODIC PHASES

For ergodic phases, Eqs.~75!–~79!, reduce to

b5b05
1

Am̃
, ~83!

q̃5
1

2Am̃
1

V8~1/Am̃ !

4T2m̃3/2
1

1

4Am0 S 12
m

m̃

12
m0

m̃

D 2

3S 21Am0

m̃
D S 12Am0

m̃
D 2

, ~84!

a5
1

2Am̃
1

V8~1/Am̃ !

4T2m̃3/2

1
1

4Am0

1

S 11Am0

m̃
D 2 FAm0

m̃
S 112Am0

m̃
D

12
m

m̃
Am0

m̃
1S m

m̃
D 2S 21Am0

m̃
D G , ~85!

m̃5m1
2

TT0
V8~a!. ~86!

They can be solved numerically: givenm, m0 , T, andT0 one
can find m̃, which, in turn, determinesq̃, b5b0 ~equiva-
lently q5q0), andw. However, it is possible to gain som
analytic understanding in a few soluble limits.

In this discussion we will concentrate on the limit of sma
m. As we noted in paper I, if we want to confineN mono-

mers within a gyration radiusAq̃}m21/4, we need m
}N24/d. Thus, for a long polymerm→0. We will also take
m5m0 to simplify the algebra a bit.

The pair of Eqs.~85! and ~86! fully determine m̃ as a
function of T andT0. For m05m they take the form

a~m̃ !5
1

2Am̃
1

B̃2

8T2m̃3/2~s1m̃21/2!d/211
1

1

4Am̃
S 11

m

m̃
D ,

~87!

at

n-
5-8
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m̃~a!5m1
B̃2

TT0~s1a!d/211
. ~88!

Given m̃, T, T0 one can find the overlap with the native sta
w and the size of the polymer from Eq.~81!.

A. Random-globule state

It is immediately evident that when both the temperat
T and the selection temperatureT0 are large,m̃'m in Eq.
~86!, leading to a random-globule solutiona5b5m21/2, q̃
5m21/2/2, w50. What is not so obvious is that in them
→0 limit a solution very close to this exists all the wa
down to very low temperatures, even for smallT0. In this
subsection we examine this state in detail.

We look first for solutions of Eqs.~87! and ~88! with the
ansatza[m̃/m fixed andm→0. We call this the random
globule ansatz, since, as will be shown, the polymer does
have any fixed conformation~it is melted!, and on the aver-
age the conformations it adopts have zero overlap with
native state.~Strictly speaking, this is the only truly ergodi
phase we find.! For a we get,

a5
1

Am
F 31

1

a

4Aa
1O~m (d22)/2!G , ~89!

which, after inserting into Eq.~88!, gives

a'11
B̃2

TT0
m (d22)/4S 4Aa

31
1

a
D d/211

. ~90!

Equation~90! can be used to calculatea as a function ofm.
One can see easily thata→1 whenm→0. This shows that
our ansatz is self-consistent in the limit of smallm. Also,
Eqs.~81! and ~84! become

w5
1

2Am
Fa21

2
1O~a21!2G , ~91!

q̃5
1

2Am
@11O~a21!#. ~92!

The normalized overlap between the polymer conform
tion and the native state is:

cosu5

lim
t→`

^x~s,t !x0~s!&

A lim
t→`

^x~s,t !2&^x0~s!2&
5

w

Aq̃S 1

2Am
D

.

~93!

From Eqs.~91! and ~92! we get cos(u);(a21);m(d22)/4.
Thus, there is no overlap with native state asm→0.
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Furthermore, to check that the polymer does not fre
into some other conformation, we calculate the normaliz
overlap between two configurations taken at very differ
times,

cosu85

lim
t,t→`

^x~s,t !x~s,t1t!&

A@ lim
t→`

^x~s,t !2&#2
5

q

q̃
. ~94!

After rewriting

q/q̃512
b

2q̃
512

1

2Am̃q̃
, ~95!

and, using Eq.~92!, we get cosu85O(a21). Again, asm
→0, cosu8→0. This confirms that the ansatza5O(1) and
m→0 leads to a melted random-globule-like phase. T
phase is identical to that found at high temperatures for
completely random heteropolymer in paper I.

The validity of the present ansatz rests upon the fact
we can solve Eq.~90!. Clearly, for m→0 a solution can
always be found, namely,a51. Since the physically rel-
evantm}N24/d, we can always satisfy this equation, for an
T0, in the limit N→`.

We now address briefly the question of what happens
finite N ~and m). One can easily see that Eq.~90! has two
solutions whenm (d22)/4/(TT0) is not too large~e.g., by plot-
ting the left- and right-hand side as functions ofa). The
solution close to 1 is lost when the slopes of the left- a
right-hand sides become roughly equal. Evaluating th
slopes leads to the condition

3B̃2

4TT0
S d

2
11Dm (d22)/4,1 ~96!

for the existence of a random-globule-like state.
Some caution is in order. Working this out for finiteN,

d53, and an average density of 1, we find that inequa
~96! is violated below a temperature

Tx5S p

6 D 1/215B̃2

8T0
N21/3. ~97!

With the small power ofN21, one has to go to quite largeN
to make this temperature very low. Thus our statement
the random-globule-like state exists for all temperatures
the m→0 limit may be of limited relevance for real three
dimensional heteropolymers of the length of typical protei
Nevertheless, here we are just considering this simple lim

We now discuss the stability of this solution. In the larg
N limit, it is locally stable against spontaneous formation
a nativelike state at anyT and T0. However, it is unstable
against glass formation at low temperatures: Since it is id
tical with the random-globule solution of the completely ra
dom heteropolymer problem, we can take over the re
from paper I that it is unstable below a temperatureTg}B̃,
with the constant of proportionality of order 1. This gla
5-9
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temperature is independent ofT0. ~In Fig. 1 this is the tran-
sition at m̃→0.! Thus, wherever the system is in a rando
globule-like state atT.Tg , it will no longer equilibrate if
the temperature is lowered belowTg . Instead, it will become
glassy and its dynamics will show aging.

B. Ergodic native state

At low T0 andT, one expects that the polymer should
very close to its native state, i.e., smalla. Therefore, we also
look for such solutions of Eqs.~87! and~88!. We will try to
solve Eqs.~87! and~88! in the limit wherem→0 andm̃ stays
finite. The limit m→0 turns out not to involve any subtletie
when m̃ is kept constant, so we will just setm50 from the
outset. Equations~87! and ~88! become

a~m̃ !5
3

4Am̃
1

B̃2

8T2m̃3/2~s1m̃21/2!d/211
, ~98!

m̃~a!5
B̃2

TT0~s1a!d/211
. ~99!

These equations can be solved form̃ as a function ofT and
T0. However, one has to keep in mind thatm→0 has been
taken. This implies that Eqs.~81! and ~84! become

w'
1

2Am
, q̃'

1

2Am
, ~100!

and, inserting Eq.~100! into Eq.~93!, the normalized overlap
between native state and polymer conformations beco
cosu'1. Furthermore, because of its large overlap with
native state, the polymer is essentially frozen. This can
seen by calculating the normalized overlap between
polymer conformations after a very long time interval, as
the preceding section. Inserting Eq.~100! into Eqs.~94! and

~95! gives cosu8'12Am/m̃→1.
There is interesting behavior associated with the limitm

→0 for very long polymers. When the polymer gets long
and longer (N→`) a finite part of the chain is not in th
native state conformation, sincea stays constant. The rest o
the chain is in the native-state, which can be seen from
fact that overlap with native state approaches 1. Thus, in
limit of a very long polymer, the fraction of chain not in th
native-state conformation becomes negligible: the recipe
biasing the coupling constantsBss8 described in chapter I
works best for long polymers.

In the following we will proceed with the solution of Eqs
~98! and ~99!. Before continuing, it will be useful to com
pactify notation a bit. Making the change of variablesX̂

5X/s for X5b,b0 ,a,q,q̃, w; Ŷ5Ys2 for Y5m,m̃; and Ẑ

5Zs (d22)/4/B̃ for Z5T,T0, we get equations of the sam
form, with X→X̂, Y→Ŷ and Z→Ẑ, but with s51 and B̃
51. Thus, without loss of generality, we can choose un
with s51 andB̃51 ~and remove the hats!. From now on we
do this.
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The working strategy for solving the equations is as f
lows. For fixedT, one can considerT0 as a function ofm̃.
This can be easily done by inserting the expression foa
from Eq. ~98! into Eq. ~99!, thus writingb051/T0 as

b0~m̃,T!5Tm̃@11a~m̃,T!#d/211. ~101!

The four panels of Fig. 2 shows the shape ofb0(m̃,T) as a
function of m̃ for four different temperatures. We want ult
mately to construct a phase diagram in the (b0 ,T) plane.
Therefore we have to specifyT ~one panel of the figure! and
b0 and ask whether one or more solutions, i.e., particu
values ofm̃, which solve Eq.~101!, exist. For example, in
panel ~a! in Fig. 2, a horizontal line atb0.b0

min intersects

b0(m̃,T) curve at two places, indicating two solutionsm̃

5m̃1 ,m̃2. To make the figures more readable we have sho
such a horizontal line, at a particular value ofb0, only in
panel~a!. If this horizontal line is moved belowb0

min , it will

never intersect theb0(m̃,T) curve. Thus, we can see that fo
every T, there is a valueb0

min(T) below which no solutions
exist.

We proceed with the analysis of Fig. 2. For sufficien
high temperatures@panels~a!–~c!# there are exactly two so
lutions for all b0.b0

min . Of these, the one with the large

value of m̃ is a stable solution~local free-energy minimum!
describing the ergodic-native phase. For example, the s
tion labeledm̃2 in panel~a! is of this sort. The one with the

FIG. 2. Analysis of ergodic-native solutions:b0(m̃,T) as a func-

tion of m̃ for four values ofT ~see text for explanation!. Panel~d!
shows the existence of the two extra solutions~one stable, the othe
unstable! in the range@b1

min,b1
max#. Graphs are qualitative, and n

numerical value is associated with the axes but, in principle,m̃ is

expressed in units ofs22 andT in units of B̃/s (d22)/4 @see the third
paragraph after Eq.~100! for discussion of units#.
5-10
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EMBEDDING A NATIVE STATE INTO A RANDOM . . . PHYSICAL REVIEW E67, 051915 ~2003!
smaller value ofm̃ @e.g., the one labeled bym̃1 in panel~a!#
is unstable. It describes a free-energy maximum between
minima at the random-globule and ergodic-native states.
will call such states ‘‘unstable stationary’’~abbreviated US!.
~We have not done a static calculation to show this, but
situation here is analogous to that in an ordinary ferromag
below the Curie temperature. There, one has three solut
of the mean-field equations, one with positive, one w
negative, and one with zero magnetization. The middle o
with zero magnetization, is unstable!. The US state has a
lower overlap with the native conformation than the ergod
native solution does, because it has a smaller value ofm̃. As
b0 is increased from below throughb0

min , the native-state
and US-state solutions appear together and separate. Fo
temperatures of panels~a!–~c!, they both exist for allb0

.b0
min .

Panel~d! ~at the lowest of the temperatures! shows a more

FIG. 3. Regions of existence and stability of ergodic-native

lutions. T is in units of B̃/s (d22)/4, andb0 in units of s (d22)/4/B̃.
Panel~a!: Ergodic-native phase and US solutions exist everywh
to the right of the thick solid curve. The ergodic-native phase
stable against glassiness everywhere there except in the diago
cross-hatched region. The US states are also unstable against g
ness there, and additionally in the horizontally cross-hatched reg
The vertical cross-hatching marks the region where the extra p
seen in panel~d! of Fig. 2 is found.~This phase is never stabl
against glassiness.! Panel~b!: Enlargement of the circled region i
panel ~a!. The AT line is tangent to the ergodic phase bound
~thick line!. At its maximum, atTmax, it becomes anx51 line
~dashed-dotted line, see also Fig. 1!. Lowering T from the white
region into the horizontally cross-hatched region results in two
ferent types of transitions depending on whether one crosses th
or thex51 line. In both cases the US state becomes glassy.
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complex behavior where double-minimum structure appe
We have found numerically that this happens belowT
'0.20. Here the behavior aroundb0

min is just as in the other

cases, but we note that at this temperatureb0(m̃,T) has a

second local minima at a smaller value ofm̃. Thus there is a
rangeb1

min,b0,b1
max for which there are four solutions. Th

rightmost one is stable and describes the ergodic-na
phase, as before. Moving from right to left, the solutio
alternate between stability and instability. Thus the seco
solution from the left represents a locally stable conform
tion. It is also correlated with the native state, sincem̃ is
finite ~though we always findm̃!1 in three dimensions!.
The remaining two solutions~with ]b0 /]m̃,0) represent
US states~local free-energy maxima! between it and the
random-globule phase in one direction and the ergod
native phase in the other.

Plotting b0
min againstT, we obtain the stability boundary

indicated by the thick solid curve in Fig. 3. Within ou
present assumption of ergodicity, everywhere to the righ
this line the ergodic-native phase is dynamically stable. O
can invert the relationb0

min(T), obtaining a transition tem-
peratureTn(b0), the maximum temperature for which th
ergodic-native phase is dynamically stable. It is separa
from the~also stable! random-globule phase by a barrier, th
top of which is described by the unstable solution.

In Fig. 3 we also indicate the region in the (b0 ,T) plane
where the second locally stable solution is found. This reg
has the form of a kind of sliver extending out toward lar
b0 at low temperatures.

So far we have not examined the stability of these so
tions against glassiness. As indicated above, we do this
the help of Fig. 1: Stable solutions cannot lie in the ran
m̃min,m̃,m̃AT . In Fig. 2, these limits are marked on them̃
axes. We thus see, for example, in panel~c!, that the native-
state solutions found for the range ofb0 corresponding to
values ofm̃ betweenm̃* and m̃AT are not acceptable: the
violate the AT stability condition~82!.

Similarly, in panel~b! the US solutions found for a rang
of b0 values can also be seen to lie in the forbidden regi
And the intermediate locally stable states that we identifi
in panel~d! always lie in a glassy region.

In Fig. 3 we also plot the AT line~80! in the (b0 ,T)
plane, indicating the regions where the various kinds of
godic solutions are forbidden. For the native-phase solutio
the forbidden region is a strip mostly at low values ofT
~diagonally cross-hatched region between thick and AT lin!.
However, it ‘‘wraps around’’ at the leftmost part of the regio
where those solutions are found.

The forbidden region for the US solutions occupies m
of the region where these solutions occur belowTmax, the
maximum temperature for a glass transition shown in Fig
including the entire portion of it belowTg , the glass insta-
bility temperature of the random-globule state.

The structure in a tiny region near the minimum value
b0 for which ergodic-native solutions are found is a bit com
plicated and cannot be seen in the top panel of Fig. 3. Th
fore, the lower panel shows an enlargement of this regio
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Z. KONKOLI AND J. HERTZ PHYSICAL REVIEW E67, 051915 ~2003!
In summary, we have found four kinds of ergodic so
tions. One essentially describes a random-globule state.
locally stable~in the limit of a large globule! at all T andb0
against condensation into a nativelike state, but unsta
against glass formation everywhere below a transition te
peratureTg . The second kind of solution describes a pha
which is highly correlated with the native-state conform
tion, and it is stable in most of the region where the solut
exists. The third kind of solution describes a locally sta
state, correlated with the native state but more weakly
than the ergodic-native phase just described. It is never st
against glass formation. Finally, there are unstable solutio
found whenever the ergodic-native solutions exist. They
scribe US states, free-energy maxima between pairs of
previously described solutions. However, in a large part
the region where these solutions are found~roughly, every-
where belowTmax'Tg), they violate the AT stability condi-
tion and so are not physically relevant.

Outside the regions where these ergodic solutions are
lowed, we have to look for glassy solutions. We do this in
following section.

X. GLASSY PHASES

In a glassy phase,r̂ (1)Þ0 and Eq.~80! has to be kept,
which gives

T252b3V 9~b!. ~102!

Also, Eqs.~74!–~76! can be rewritten in the form

V8~b!2V8~b0!

b02b
5

T2

2

Am̃

b S 1

b
1Am̃ D , ~103!

b02b5
1

x S 1

Am̃
2bD , ~104!

and, withm05m, Eqs.~78! and ~79! become

a5
b0

2
1

1

8T2m̃3/2~11b0!d/211
1

1

4Am̃
S 11

m

m̃
D ,

~105!

m̃5m1
1

TT0~11a!d/211
. ~106!

The above equations can be solved as follows. Equa
~102! givesb as a function ofT, and then Eqs.~103!, ~105!,
and~106! can be used to findb0 andm̃ as functions ofT and
T0. Onceb0 and m̃ are found one can calculateq̃ as

q̃5
b0

2
1

1

8T2m̃3/2~11b0!d/211

1
1

4Am
S 21Am

m̃
D S 12Am

m̃
D . ~107!
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As in our analysis of ergodic solutions in the precedi
section, we will try two types of ansatz: one withm̃/m
5const asm→0 and one withm̃5const asm→0 leading to
what we call frozen-globule and glassy native phases,
spectively.

A. Frozen-globule phase

The limit wherea5m̃/m is kept constant andm→0 is
easily treated. Equation~102! stays the same, while Eq
~103! gives

V~b!2V~b0!

b02b
'

T2Aa

2b2
Am. ~108!

Sinceb is kept fixed the only solution of the equation abo
is b0→` as

b0'
c~b!

Aam
, ~109!

wherec(b) is a function, which depends only onb, asm is
sent to 0. Inserting Eq.~109! into Eq. ~106! gives

a511O~m (d22)/4! ~110!

and a stays very close to 1, as in the ergodic rando
globule case. Also,w is given by Eq.~91!, while Eq. ~107!
gives

q̃5
1

2Am
@c~b!1O~a21!#, ~111!

which can be compared with ergodic globule result, Eq.~92!.
Equation ~93! stays the same, and one gets cosu;a21,
which goes to zero asm→0. There is no overlap with native
state. Does the system freeze into some other configurat
To find out, we calculate overlap angles between configu
tions at timet and a much later timet8. As discussed in Sec
VII, there are two ways in which the limitt→` can be
taken, leading toq0Þq.

In the first limit, the equivalent of Eq.~94! for the ansatz
used here reads

cosug85

lim
l,t→`

^x~s,t !x~s,lt !&

A@ lim
t→`

^x~s,t !2&#2
5

q0

q̃
. ~112!

Using Eq. ~64!, we can write cosug8512b0/2q̃, and Eqs.
~111! and ~109! give cosug8;a21, which goes to 0 asm
→0. ~This behavior is analogous to that found inp-spin
glasses.! However, at not-too-long time scales~shorter than
the waiting time!, as in Eq.~113!, the polymer is frozen:

cosug95

lim
t,t→`

^x~s,t !x~s,t1t!&

A@ lim
t→`

^x~s,t !2&#2
5

q

q̃
. ~113!
5-12
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EMBEDDING A NATIVE STATE INTO A RANDOM . . . PHYSICAL REVIEW E67, 051915 ~2003!
Using Eq.~64!, we can write cosu g9512b/2q̃, and Eq.~111!
gives cosu g9;12Amb/c(b), which goes to 1 asm→0.
Thus, this glassy phase has no overlap with the native s

As discussed above, there is an upper temperature
Tg ~independent ofb0) above which this phase melts, lea
ing the system in the random-globule state.Tg can be found
from Eqs.~102! and ~103!, using b0→` and ~104! with x

→1. This leads to a valueb52/( 1
2 d21)5O(1) at the tran-

sition andTg52( 1
2 d21)(1/2)[(1/2)d21]/( 1

2 d11)(1/2)[(1/2)d11].
For d53, Tg'0.535.

B. Glassy native states

We also have to study the possible glassy phases
overlap with the native state, i.e., with finitem̃ ~and, accord-
ingly, finite a) when m→0. In such a phase, as in the e
godic nativelike states described above, the system mo
only in the neighborhood of the native-state configurati
However, in a ‘‘glassy native’’ state even this restricted m
tion is strongly suppressed by the complexity of the lo
potential energy surface, and a glassy phase results.

As in the ergodic ansatz, the limitm→0 introduces no
problems. Equations~102! and ~103! remain the same as i
the frozen-globule case, while the equations fora and m̃,
Eqs.~105! and ~106! become

a~m̃ !5
b0

2
1

1

8T2m̃3/2~11b0!d/211
1

1

4Am̃
, ~114!

m̃~a!5
1

TT0~11a!d/211
. ~115!

Again, Eq. ~102! specifiesb as a function ofT, and Eqs.
~103!, ~114!, and~115! determineb0 andm̃ as functions ofT
andT0 . q̃ andw are given byw,q̃'1/(2Am).

The overlap with the native state is the largest possi
cosug51, as can be easily seen from Eq.~93! and the values
for w and q̃ we have just given. The overlap between tw
conformations at very different times also takes its larg
possible value. From Eqs.~112! and ~113!, knowing thatb0

and b do not depend onm we have cosug8512b0/2q̃'1

2b0Am→1 and cosu g9512b/2q̃'12bAm→1. Thus, the
polymer is frozen almost everywhere into the native conf
mation. However, the freezing is not total, sincea in Eq.
~114! is not zero. Furthermore, there is aging in the syste
sincex in Eq. ~104! is not equal to 1.

We turn now to the solution of the Eqs.~102!, ~103!,
~114!, and~115!. As for the corresponding ergodic phases
have to resort to numerical solution; here we describe
analysis. The working strategy is similar to the one presen
in Sec. IX B; the goal is to findb0 as a function ofm̃ for
fixed T since, as in the ergodic native case, extrema of
function b0(m̃,T) govern the phase boundaries.

The procedure for finding value of the functionT0(m̃,T)
is as follows. Equation~102! determinesb as a function ofT,
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FIG. 4. Analysis of glassy-native solutions:b0(m̃,T) as a func-

tion of m̃ for three fixed values ofT ~see text for explanation!.
Graphs are qualitative and no numerical value is associated with
axes~please, see figure caption of Fig. 2 for discussion of uni!.

Full lines: b0(m̃,T) calculated within the ergodic ansatz~as in Fig.

2!. Dashed lines:b0(m̃,T) calculated with the glassy ansatz. Th

actual curves vary withm̃ in a way that is difficult to plot in a usefu
way; so here we have distorted them in such a way as to make
qualitative form~number and ordering of maxima and minima! evi-

dent. When the two curves cross atm̃5m̃AT , one has to change

from the ergodic to the glassy solution~when approaching fromm̃

5`). Similarly, whenm̃5m̃min one has to go back to the ergod
solution. The thick dashed line indicates the physically relev
states~both stable phases and US states!.
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Z. KONKOLI AND J. HERTZ PHYSICAL REVIEW E67, 051915 ~2003!
to be referred to asb(T). Once b(T) is found from Eq.
~102!, it is inserted into Eq.~103!, which determines

b0(T,m̃). The value found forb0 is inserted into Eq.~114! to
find a, and finally b051/T0 is calculated from Eq.~115!.
Thus, at each temperature for which glassy solutions are
sible, we can construct a graph ofb0(m̃), as we did for
ergodic solutions in Fig. 2. We have usedMATHEMATICA to
do these calculations. We can use these curves, together
the ergodic ones previously analyzed, to identify the poss
states of the system at a given temperature andb0 ~Fig. 4!.
The procedure is fairly simple. At any givenm̃, only one of
the solutions is physical: In the regionm̃min,m̃,m̃AT one
has to follow the glassyb0(m̃) curve, while outside it one
follows the ergodic one. In Fig. 4 the physical solution
indicated as the thick dashed curve. One then looks for
lutions as intersections of this curve with a horizontal line
a given value ofb0, as done previously@e.g., as in Fig. 2,
panel~a!# within the ergodic ansatz.

In Fig. 4 this procedure is shown for several differe
values ofT. In the first panel,T lies just a little belowTmax
@as in Panel~b! of Fig. 2#. Suppose we start the ergod
native phase at largeb0 and then lowerb0. @In Fig. 5, this
would correspond to moving along a horizontal line~con-
stantT) slightly above pointB in panel~b! or ~c!.# We can
lower b0 all the way down tob0

min without encountering an
AT instability. So, just as in the ergodic analysis of Sec. X
beyondb0

min the ergodic-native phase melts into the rando
globule phase.

In the same panel we can also analyze what happen
the unstable stationary state in the same range ofb0 for this
temperature. At very largeb0 we have an ergodic solution
but as we lowerb0 we pass through a range ofm̃, between
m̃min andm̃AT , where the ergodic solution is unstable agai
glassiness. In this region we must follow the glassy cu
instead of the ergodic one. We interpret this glassy solu
in the following way: The free energy landscape near the
maximum becomes rough in this range of values ofb0 ~at
this temperature!, the same way the free-energy landsca
near the minimum corresponding to a thermodynamic ph
becomes rough in a glassy state. We call it a ‘‘glassy
state.’’

The next panel is for a slightly lower temperature~but still
aboveTg). Here, as we lowerb0 in the ergodic-native phase
we reach an AT instability before we get all the way down
the minimum on the ergodic curve.@In Fig. 5, this would
correspond to moving on a line of constantT, meeting the AT
line somewhere between pointsA andB in panel~b! or ~c!.#
Furthermore, the only available glassy solution form̃,m̃AT

is one with negative]b0 /]m̃, that is, it corresponds to th
kind of glassy US state discussed above. As this is no
stable phase, we conclude that for thisT, the minimum value
of b0 lies at this AT line, and beyond it there is no stab
nativelike state. We can follow the glassy US state back u
largerb0, seeing that we eventually cross over to a norm
~non-glassy! transition state.

In the last panel, the temperature is lowered a bit m
~below Tg). Again, starting in the ergodic native phase
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FIG. 5. The final phase diagram. Same units as in Fig. 3. Pa
~a!: Stable phases. Region I: Random globule is the only sta
phase. Region II: Frozen globule is the only stable phase. Re
III: Ergodic-native and random-globule phases stable. Region
Ergodic-native and frozen-globule phases stable. Region V@only
visible in panel~b!#: Glassy native and random globule stable. R
gion VI: Glassy native and frozen globule stable. The dashed
marks the boundary of the~unphysical! ergodic-native state from
Fig. 3, to emphasize that the phase boundary of the glassy-n
state~solid! does not coincide with it. Panel~b!: Enlargement show-
ing structure in the region nearT5Tmax'Tg andb051.45~includ-
ing region V!. Below pointB the boundary of region III is given by
the AT line. Above pointB the boundary is the ergodic-native st
bility limit @the uppermost line in panel~a!#. The continuation of the
AT line is shown as a dotted line~which turns into dash-dotx51
line!. Panel~c!: The US states are ergodic in the vertically hatch
region, glassy in the horizontally hatched region. The bound
above and to the right of pointA is an AT line. Beyond the region
shown thex51 line falls off monotonically, and forb0→` it ap-
proachesTg . Below pointA, the small-b0 boundary coincides with
the line between regions II and VI in panels~a! and ~b!.
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EMBEDDING A NATIVE STATE INTO A RANDOM . . . PHYSICAL REVIEW E67, 051915 ~2003!
large b0 and loweringb0, we encounter an AT instability
and a glassy solution appears.~Equivalently, in Fig. 5 one
moves on a horizontal line somewhere belowTg until meet-
ing the AT line for the first time.! For smallerb0, we switch
to the glassy curve, which has positive]b0 /]m̃, describing a
glassy native phase. We can follow this curve down to
minimum b0, beyond which no phases correlated with t
native phase exist. But, of course, following it back up
ward largeb0 on the unstable branch, we can identify t
glassy US state between the phase correlated with the n
state and the one uncorrelated with it.~Above Tg , the latter
is the random-globule phase; below it, it is the froze
globule phase.!

XI. FEATURES OF THE PHASE DIAGRAM

The phase structure implied by this simple model is not
simple. Figure 5 shows the phase diagram constructed f
the above analysis. For clarity, we show in the top panel o
the solutions that correspond to stable phases. The se
panel shows the details in the region where the ergo

FIG. 6. Schematic free-energy surfaces~free energyF is plotted
vs overlap with native statew) in different regions of the phas
diagram. Graph is schematic and no numerical value is assoc
with axes. In principle,F could be thought of as in units ofkBT and
w in units of s. ~a!: Region I, ~b!: region II, ~c!: region III, ~d!:
region IV, ~e!: region V, ~f!: region VI. See the text for explanatio
of all regions.
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native, glassy-native, random-globule, and frozen-glob
states come together~or nearly so!. The third panel shows
the regions where ergodic and glassy US states are foun

There are six distinct regions in the phase diagram.
region I ~high T, small b0), the only stable phase is th
random globule. In region II~smallb0 , T,Tg) it undergoes
a glass transition to the frozen-globule phase. The prope
of the system in this part of the phase diagram are the s
as in the completely random heteropolymer model of pape
the bias of the interactions toward a native state does
have any effect until a~temperature-dependent! threshold
b0

c(T) is reached. This threshold is marked on the diagr
by the lines separating region I from regions III and V a
region II from region VI.

To help thinking about these phases, we offer the sc
matic free-energy-surface pictures of Fig. 6. They show h
we imagine the free energy varies as a function of the nat
state overlap coordinatew. Figure 6~a! depicts this cross-
section through the free-energy surface in region I, wh
there is a single smooth minimum aroundw50, representing
the random-globule phase. Figure 6~b! shows what happen
in region II, where this phase is replaced by the froze
globule phase. We represent this by drawing the free-ene
surface with many local minima. Figure 6~c! shows what
happens in the middle of region III, where there are tw
~smooth! minima, the new one corresponding to the ergod
native phase.~It will lie above or below that atw50 accord-
ing to whether we are above or below a first-order transit
that we expect to occur at a temperatureT1,Tn , see below.!
In Fig. 6~d! we depict the situation in region IV, where bot
thew'0 region and the region around the maximum beco
rough. Figure 6~e! represents region V, with the native valle
and the maximum rough, but the region nearw50 still
smooth. In Fig. 6~f! ~region VI!, that, too, becomes rough.

An important feature is the fact that the random-globu
and frozen-globule phases remain~dynamically! stable in
their respective temperature ranges for allb0. Thus the hori-
zontal line separating region I from region II continu
across the diagram, separating region V from region VI a
region II from region IV.

In each of regions II, IV, V, and VI@Fig. 6, panels~b!, ~d!,
~e!, ~f!# there are two stable states. Thus, regions I and III
separated by the lineTn(b0), below or to the right of which,
in addition to the random-globule state, an ergodic-nat
state exists and is stable. In region IV, the frozen-globule
this ergodic-native states are both stable. In region V,
random-globule state and a glassy-native state are sta
while in region VI the stable states are the frozen-glob
and the glassy-native phases.

The diagram shows some interesting fine structure in
neighborhood of the region where regions I, III, and V me
~second panel, point A!. In particular, below point A, the
boundary between regions III and V~i.e., between the
ergodic-native and glassy-native states! is an AT line. It
comes about as can be seen in the last panel of Fig. 4, wh
following the ergodic phase down from highb0 and m̃, we
reachm̃AT and thereafter have to switch to the glassy so
tion.

ed
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Z. KONKOLI AND J. HERTZ PHYSICAL REVIEW E67, 051915 ~2003!
On the other hand, the boundaryTn(b0) above point B is
reached as in the first panel of Fig. 4: One can come all
way down to the minimum value ofb0 for the ergodic solu-

tion before reachingm̃AT . The full line continuing upwards
and to the right of pointB is an AT line, which goes over into
an x51 line at its maximum,Tmax. Below this line US
solutions become glassy.

Between pointsA and B, the boundary is marked b

reachingm̃AT in the way shown in the second panel of Fig.
There is no stable ergodic-native solution to the left of t
line, since, upon loweringb0 below b0

min in panel ~b!, the

solution with]b0 /]m̃.0 is lost. Thus in this region the line
AB is an AT line for both the native phase and the US so
tions. The dashed line marks the boundary found if one
nores the AT line~i.e., it is a portion of the boundary foun
using the ergodic ansatz and shown in Fig. 3!.

Everywhere below the AT line~both portionAB and its
extension upward to the right! is the region where the US
solutions are glassy, as shown in the last panel of Fig. 5
a givenb0, these features all have an onset at a tempera
betweenTg andTmax. As can be seen in Fig. 1, this is a ve
small temperature range. This is also the reason why the
fine structure, as shown in both the second and the t
panels of Fig. 5, in such a small temperature range in
phase diagrams.

As remarked above, we have not done an equilibri
calculation, but we expect that the first-order transition te
peratureT1(b0) where the free energies of the random
globule and ergodic-native phases are equal will also
with b0. For largeb0, we expectT1, like Tn , to be propor-
tional to b0 ~but T1,Tn , of course!.

Thus, at fairly largeb0, we expect the following sequenc
of stable states as we lowerT from a high value. Initially,
only the random-globule state is stable. Then, belowTn , the
ergodic-native state is also stable, and belowT1 it becomes
the lowest free-energy state. Going further down inT, we
cross the boundary~last panel in Fig. 5! where the US state
between the ergodic-native and random-globule states
comes glassy~i.e., acquires a rough local free energy lan
scape!. Very soon thereafter, we crossTg , where the
random-globule state undergoes glassy freezing. Continu
we reach a temperature where the ergodic native-state un
goes glassy freezing. Finally, we reach the stability limit
this glassy-native phase, leaving the system with nowher
go but the frozen-globule state.

What lessons are there in these findings for protein fo
ing? We start from the assumption that the initial state in
folding process is uncorrelated with the native state~i.e., in
Fig. 6 we start in a local minimum atw'0). Folding re-
quires the system to find its way to the~ergodic! native state.

One feature that is evident is that such a path in confi
ration space always requires an uphill free-energy step. T
is because either the random-globule or frozen-glob
phases is always locally stable.

If we stick to our mean-field dynamical picture, whe
barriers are infinite, folding is, strictly speaking, impossib
In dynamical terms the ‘‘infinite’’ barriers translate into th
fact that the equations that govern the motion of order
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rameters,w included, have basins of attraction correspond
to the plots shown in Fig. 6. For example, starting fromw
somewhere close to 0 and given a free-energy profile
that in Fig. 6~c!, dynamical equations will never carryw to
the large value describing the native state. On the contrarw
will approach 0 as time goes on.

But, if we relax this assumption and imagine finite bar
ers ~associated with local nucleation of a native phase@44–
46#!, we may ask~informally! when activated motion ove
the barrier to nucleation is least hindered. We argue that
free-energy landscape features globally present in our m
field picture will also be relevant locally: when our calcul
tion here finds a glassy US state, we expect that free-en
surface near the true transition state will also be rough. Th
from the preceding description of the phases and the tra
tion states between them, we can see that folding should
easiest for largeb0 in a window betweenT1(b0) and the
upper boundary of the region where the US states bec
glassy~and passage across the transition region is kinetic
impeded by the tortuous nature of the local free-energy la
scape!. The latter boundary lies, in turn, just barely abo
Tg , where the landscape in the~large! portion of the con-
figuration space uncorrelated with the native state also
comes rough, further impeding escape from it. At still low
temperatures, things become even worse, first with the o
of glassiness in the nativelike region of configuration spa
itself and finally with the disappearance of nativelike so
tions. But these features probably have minor consequen
since folding will already have been so strongly impeded
the effects~with onset nearTg) that tend to confine it in a
region of configuration space uncorrelated with the nat
state.

XII. DISCUSSION

We have introduced what we might call a generic mo
for a protein, based on what seems to us to be the simp
way to incorporate a tendency to form a native state in
otherwise random heteropolymer model. To make it poss
to calculate typical properties, we follow previous autho
@2,24–26# and do not specify a particular native state, b
rather an ensemble of them, constrained only by cha
entropic constraints and confinement to the appropriate
ume. This ensemble is characterized by the selection t
peratureT0. Our model differs from previous ones in tha
they are based on random-sequence heteropolymers, w
we start from a model@6,7# in which each monomer-
monomer interaction is an independent random variable.

While it might be argued that random-sequence mod
are more relevant to proteins, they approach the model
consider here in the limit where the number of monom
types becomes large. Thus, what we find out about our mo
may be relevant to proteins~with 20 different amino acids!.
Of course, it is also important to study what happens aw
from the large-monomer-type limit; our analysis here c
help in solving that more difficult problem.

Furthermore, naively, one might assume that by adjus
N(N21)/2 parameters one could imprint a native state m
strongly than for models with onlyN parameters. Our mode
5-16
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shows that this is not necessarily true. Parts of the ph
diagram are glassy, even for very low selection tempera
T0, when the native state should be strongly imprinted i
the model.

Instead of the quadratic confinement termmx(s,t)2 one
could add three-body terms, which are commonly used to
the globule density. It would be interesting to extend t
analysis presented here to such models. Also, in our tr
ment, translational invariance within the globule is put in
hand. Keeping three-body terms would lead to autom
translational invariance. We have seen that if translatio
averaging is omitted~see paper I! then the equations becom
coupled in thek variable and are thus a lot harder to solv

Within our model, we have made just two approxim
tions: the Gaussian variational ansatz of Sec. VI, and
assumption of one-step ergodicity breaking~analogous to
one-step replica symmetry breaking in the replica approa!.
Otherwise the solution is complete and exact to the accu
we were able to achieve numerically.

Our most important result is the existence of the vario
different phases at largeB̃/T0, where the interactions tha
favor a native state are strong. While it is natural to ant
pate that the nativelike configurations will be thermally d
rupted above a temperature of orderB̃2/T0, it is not so ob-
vious that at low temperatures there will be oth
impediments to efficient folding. We identify two of these
follows.

~1! The frozen-globule state, which is uncorrelated w
the native state, always exists belowTg , no matter how big
b0 is. This means that in a large part of configuration spa
the system may be trapped in a rough energy landscape
never @in mean-field theory~MFT!# get to the native-state
region where it can fold rapidly. Furthermore, in almost t
same temperature range, we expect that the energy lands
is also rough around the transition region on the way to
correctly folded state, further impeding the folding proce
Thus, while lower temperature favors well folded ov
random-globule-like configurations energetically, the rou
energy landscape of the glassy phase will hinder correct f
ing. Our conclusion here is consistent with that of Goldst
et al. @47#, who found~albeit in a different kind of model!
that a largeTn /Tg ~or T1 /Tg) ratio favors folding.

~2! At even lower temperatures, the native state itsel
unstable against a glass transition where it splits into a la
number of substates. Transitions between these substate
blocked by high barriers~infinite, in MFT!. A phase of this
kind was found earlier by Bryngelson and Wolynes in a p
nomenological model@48#. It is tempting to associate th
substates with the glassy conformations observed at temp
tures below 200 K in myoglobin Ref.@49#.

Of course, MFT is an approximation. The escape from
tortuous part of the energy landscape to the smooth re
will not take forever, nor will transitions between low-T sub-
states. Nevertheless, MFT does indicate when we can ex
relaxational dynamics, including folding, to be slow or fa
as well as give us some insight into the physics behind th
differences.

Our analysis here is a purely dynamical one. We do
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compute equilibrium partition functions. A complete analys
would include such calculations, but we defer them to futu
work. Nevertheless, the purely dynamical analysis can rev
important properties of the system that cannot be seen in
equilibrium analysis. For example, it has been known fo
long time that for a large class of models, namely, tho
which have a glass transition wherex→1, the dynamic and
static glass transition temperatures are different@39,42,43#.
This is expected to be the case for the transition atTg in our
model: The equilibrium glass transition temperature is low
than the dynamical one. Thus, in a temperature range
below the dynamicalTg , the equilibrium analysis does no
reveal the slow dynamics~accompanied by aging! that we
are able to identify and analyze here.

In other glassy models for which it has been possible
do a more complete analysis@34,35,39,42,43#, the static and
dynamic transitions coincide when they occur as a resul
an Almeida-Thouless instability@the marginal stability con-
dition, Eq. ~80!# @50#. This is the case here at the pha
boundary where the nativelike state becomes glassy.

Gillin and Sherrington@51# and Gillin, Nishimori, and
Sherrington@52# have been able to analyze both the stat
and the dynamics of several classes of mean-field spin-g
models with a competition between glassy and ferromagn
states~see also Ref.@53# for a special case!. Some features of
the phase diagram of our model that we have been abl
discover so far are also seen in their models.

Gillin et al. studied full~as well as one-step! replica sym-
metry breaking~RSB! solutions, which we have not. In som
of their models, the counterpart of our glassy native ph
undergoes full RSB at low temperatures, and the counter
of our II–VI boundary becomes vertical. It is possible in o
model as well that, in particular regions of the phase d
gram, our one-step solutions are not stable and full RSB
necessary. More generally, it will be an interesting probl
to try to explore what kinds and degrees of universality th
are in the phase structures of various systems where
glassiness induced by disorder competes with some kin
order analogous to the native state in our problem or
ferromagnetic state in theirs.
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APPENDIX A: CORRELATION FUNCTION G10
ss8

Here we derive Eq.~30!. Inserting Eq.~14! for the super-
field into Eq.~25! gives

G10
ss85^x~s,t1!x0~s8!&1^h̄~s,t1!x0~s8!&u1

1 ū1^h~s,t1!x0~s8!&1 ū1u1^ x̃~s,t1!x0~s8!&.

~A1!

One can show that the action of the dynamical genera
functional Fdyn @see Eq.~23!# is invariant under the infini-
tesimal transformation~Becchi-Rouet-Stora symmetry!
5-17
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dF~s,t,u,ū !5e
]

]ū
F~s,t,u,ū !. ~A2!

This follows in two steps. First one notices that for any fun
tion f,

dE dū f „F~ū!…5eE dū
]

]ū
f „F~ū!…50, ~A3!

due to the identity*d ū(]/]ū)50. This means that any term
involving a local function ofF ~i.e., not containing deriva-
tives overu and ū), e.g.,S2@F,x0# @see Eq.~16!#, is invari-
ant under the transformation~A2!. S0@x0# is trivially invari-
ant since it does not contain the superfieldF. ~The same
reasoning holds for a transformation such as Eq.~A2! with a
derivative with respect tou instead of with respect toū.! The
only term left isS1@F# ~i.e., the part of the action quadrat
in the superfield! and it is straightforward to see that th
term is also invariant under Eq.~A2! ~though not under the
transformation involving the derivative with respect tou).

The fact that the action is invariant under Eq.~A2! im-
plies the Ward identity

]

]ū1

G12
ss850, ~A4!

which gives 05^hx0&1u1^x̃x0& ~we have suppressed th
arguments of the fields to simplify the notation!. This implies
that separately one has

^hx0&50, ^ x̃x0&50. ~A5!

Inserting Eq.~A5! into Eq.~A1! gives the desired result, Eq
~30!.

APPENDIX B: DETAILS ON THE GVA AND HOW TO
IMPROVE IT

Here we give more background on the use of Eq.~36!. In
the dynamical calculation, the fields are complex and con
Grassmann variables; thus,Fdyn is not a real number. This
means that any interpretation of Eq.~36! as an extremum
condition forFdyn has to be given up. Nevertheless, we c
still make some sense of the GVA as the first step in a s
tematic approximation scheme.

Formally, one starts from Eq.~23!, which we rewrite in
the shorter form

e2Fdyn5E DCe2S[C] , ~B1!

whereC stands for the pair (x0 ,F) and, likewise,DC for
Dx0DF. One can expressFdyn in a slightly different form

e2Fdyn5^e2(S2Svar)&vare
2Fvar, ~B2!
05191
-

in

s-

where

e2Fvar5E DCe2Svar ~B3!

and

^~••• !&var5

E DC~••• !e2Svar

E DCe2Svar

. ~B4!

In a static calculation one would proceed with the inequa

e2F>e2^(S2Svar)&vare2Fvar ~B5!

to conclude that

F<^S2Svar&var1Fvar . ~B6!

Thus, in a static calculation, the variationally obtainedF
gives an upper bound on the trueF. What is allowed to vary
is the form ofSvar , most often, the parameters describing

~In the GVA, Svar is specified byG12
ss8 andG10

ss8 .!
In the dynamical problem we follow another route, sta

ing exactly at the problematic step, Eq.~B5!, along the lines
of Ref. @54#. Instead of the inequality~B6! we use Eq.~B2!
in a slightly modified form

Fdyn5Fvar2 ln^e2DS&var , ~B7!

whereDS5S2Svar . Applying a cumulant expansion

^exp~2DS!&var5expF2^DS&var1
1

2
~^DS2&var

2^DS&var
2 !1•••G , ~B8!

one gets

Fdyn5Fvar1^S2Svar&var1DF, ~B9!

whereDF contains second- and higher-order corrections
DS. In any approximation made by keeping a finite numb
of terms in Eq.~B8! ~the simplest being to setDF50), Fdyn

depends onG12
ss8 . To minimize this dependence, we cho

G12
ss8 so that the derivative of the approximate form forFdyn

with respect toG12
ss8 vanishes. This gives Eq.~36!. Further-

more, if all terms inDF are kept, this procedure, by con
struction, formally gives back the exactFdyn .

The meaning of minimizing the dependence with resp
to quantities involving Grassmann numbers may seem
scure, but we note that we are using the SUSY representa
only for compactness. The entire GVA calculation could ha
been presented equivalently without any Grassmann v
ables, with no change in meaning or result. Thus, we
really only minimizing the dependence on parameters
physically well-defined correlation and response function
5-18
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